• Login
    View Item 
    •   ORKA Home
    • Conditions, Lifestyle Factors & Interventions
    • Conditions
    • Mental Disorders (General)
    • View Item
    •   ORKA Home
    • Conditions, Lifestyle Factors & Interventions
    • Conditions
    • Mental Disorders (General)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying psychiatric diagnosis from missing mood data through the use of log-signature features

    Thumbnail
    View/Open
    Main article (1.937Mb)
    Date
    2022-11
    Author
    Goodwin, Guy M
    Saunders, Kate E.A.
    Metadata
    Show full item record
    Citation
    Wu Y, Goodwin GM, Lyons T, Saunders KEA (2022) Identifying psychiatric diagnosis from missing mood data through the use of log-signature features. PLOS ONE 17(11): e0276821
    Abstract
    The availability of mobile technologies has enabled the efficient collection of prospective longitudinal, ecologically valid self-reported clinical questionnaires from people with psychiatric diagnoses. These data streams have potential for improving the efficiency and accuracy of psychiatric diagnosis as well predicting future mood states enabling earlier intervention. However, missing responses are common in such datasets and there is little consensus as to how these should be dealt with in practice. In this study, the missing-response-incorporated log-signature method achieves roughly 74.8% correct diagnosis, with f1 scores for three diagnostic groups 66% (bipolar disorder), 83% (healthy control) and 75% (borderline personality disorder) respectively. This was superior to the naive model which excluded missing data and advanced models which implemented different imputation approaches, namely, k-nearest neighbours (KNN), probabilistic principal components analysis (PPCA) and random forest-based multiple imputation by chained equations (rfMICE). The log-signature method provided an effective approach to the analysis of prospectively collected mood data where missing data was common and should be considered as an approach in other similar datasets. Because of treating missing responses as a signal, its superiority also highlights that missing data conveys valuable clinical information.
    Description
    Open Access
    URI
    https://oxfordhealth-nhs.archive.knowledgearc.net/handle/123456789/1192
    Published online at:
    https://doi.org/10.1371/journal.pone.0276821
    Collections
    • Mental Disorders (General) [47]

    Oxford Health copyright © 2019
    Contact Us | Send Feedback | JSPUI
    Powered by KnowledgeArc
     

     

    Browse

    All of ORKACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsContributor DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsContributor Discipline

    My Account

    Login

    Researcher Profiles

    Researchers

    Oxford Health copyright © 2019
    Contact Us | Send Feedback | JSPUI
    Powered by KnowledgeArc