• Login
    View Item 
    •   ORKA Home
    • Conditions, Lifestyle Factors & Interventions
    • Lifestyle, Risks & External Factors
    • Neuroscience
    • View Item
    •   ORKA Home
    • Conditions, Lifestyle Factors & Interventions
    • Lifestyle, Risks & External Factors
    • Neuroscience
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hierarchical modelling of functional brain networks in population and individuals from big fMRI data

    Thumbnail
    Date
    2021-02
    Author
    External author(s) only
    Metadata
    Show full item record
    Citation
    Seyedeh-Rezvan Farahibozorg, Janine D Bijsterbosch, Weikang Gong, Saad Jbabdi , Stephen M Smith, Samuel J Harrison, & Mark W Woolrich. Hierarchical modelling of functional brain networks in population and individuals from big fMRI data. preprint 1 Feb 2021
    Abstract
    A major goal of large-scale brain imaging datasets is to provide resources for investigating heterogeneous populations. Characterisation of functional brain networks for individual subjects from these datasets will have an enormous potential for prediction of cognitive or clinical traits. We propose for the first time a technique, Stochastic Probabilistic Functional Modes (sPROFUMO), that is scalable to UK Biobank (UKB) with expected 100,000 participants, and hierarchically estimates functional brain networks in individuals and the population, while allowing for bidirectional flow of information between the two. Using simulations, we show the model’s utility, especially in scenarios that involve significant cross-subject variability, or require delineation of finegrained differences between the networks. Subsequently, by applying the model to resting-state fMRI from 4999 UKB subjects, we mapped resting state networks (RSNs) in single subjects with greater detail than we have achieved previously in UKB (>100 RSNs), and demonstrate that these RSNs can predict a range of sensorimotor and higher-level cognitive functions. Furthermore, we demonstrate several advantages of the model over independent component analysis combined with dual-regression (ICA-DR), particularly with respect to the estimation of the spatial configuration of the RSNs and the predictive power for cognitive traits. The proposed model and results can open a new door for future investigations into individualised profiles of brain function from big data.
    URI
    https://oxfordhealth-nhs.archive.knowledgearc.net/handle/123456789/744
    Published online at:
    https://doi.org/10.1101/2021.02.01.428496
    Collections
    • Neuroscience [35]

    Oxford Health copyright © 2019
    Contact Us | Send Feedback | JSPUI
    Powered by KnowledgeArc
     

     

    Browse

    All of ORKACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsContributor DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsContributor Discipline

    My Account

    Login

    Researcher Profiles

    Researchers

    Oxford Health copyright © 2019
    Contact Us | Send Feedback | JSPUI
    Powered by KnowledgeArc