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Abstract 

Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is 

debated, the characterisation of its function lends it credibility as a candidate. A key aspect of this functional 

characterisation is the determination of the role of common non-synonymous polymorphisms on normal 

variation within these functions. The common allele (A) of the DISC1 SNP rs821616 encodes a serine at the 

Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-

regulated protein Kinases 1 and 2 (ERK1/2) which stimulate the phosphorylation of tyrosine hydroxylase, the 

rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human A 

(serine) homozygotes would show elevated dopamine synthesis capacity compared to individuals cysteine 

hetero/homozygotes (AT or TT genotype) for rs821616. [18F]-DOPA PET was used to index striatal 

dopamine synthesis capacity as the influx rate constant Ki
cer in healthy volunteers DISC1 rs821616 serine 

homozygotes (N=46) and healthy volunteers DISC1 rs821616 cysteine carrierscysteine hetero/homozygotes 

(N=56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 serine 

homozygotes exhibited a significantly higher striatal Ki
cer compared to cysteine carrierscysteine 

hetero/homozygotes (p-value=0.012) explaining 6.4% of the variance (partial eta squared=0.064). Our finding 

is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine 

hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for 

psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major 

mental illness. 
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Introduction 1 

The dopamine hypothesis has been a leading theory underlying the neurobiology of schizophrenia for 2 

the last four decades (1, 2). The hypothesis was initially based on evidence showing that antipsychotic 3 

medications block dopamine receptors (3-5) and that drugs increasing dopamine levels elicit psychotic 4 

symptoms in healthy people (6-8) and people with schizophrenia (9, 10). Using [18F] fluoro-3,4-5 

dihydroxyphenyl-L-alanine (F-DOPA) Positron Emission Tomography (PET), increased presynaptic 6 

dopamine synthesis capacity has been found in schizophrenia (11), people with prodromal psychotic 7 

symptoms (12, 13) and those with clinical progression to psychosis (14). Whilst a substantial body of 8 

evidence supports the role of increased presynaptic dopamine synthesis capacity in the pathoaetiology 9 

of psychosis, little is known about how genetic factors affect the implicated dopamine system(s) (15). 10 

 11 

The Disrupted-in-Schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of a 12 

balanced t(1;11) (q42;q14.3) translocation in a Scottish family with a high-prevalence of psychiatric 13 

disorders including schizophrenia (16-18). Further evidence for a link between DISC1 and psychotic 14 

and affective disorders emerged from the follow-up of families displaying rare DISC1 mutations (19, 15 

20) and large family-based studies in the population isolate of Finland (21-23) although a large meta-16 

analysis of families did not observe linkage at this region (24). Furthermore, evidence from individual 17 

population-based cohorts has been inconsistent (25, 26) leading to ongoing debate on its involvement 18 

in schizophrenia (27, 28). Whilst this controversy remains unresolved, there is value in seeking 19 

convergent evidence via studies elucidating the functional impact of the gene and its variations (29-20 

32). DISC1 is a scaffold protein involved in a wide range of neuronal functions including neuro-21 

signalling (30, 33). Preclinical studies show that DISC1 variant models exhibit increased 22 

amphetamine-induced dopamine release in the ventral striatum (see (34-37) reviewed in (38), 23 

indicating that DISC1 variations might affect presynaptic dopamine synthesis capacity. 24 

 25 
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One of the most studied DISC1 single nucleotide polymorphisms (SNPs) is rs821616 which is a non-26 

synonymous mutation leading to the translation of a serine (A allele) or a cysteine (T allele) at codon 27 

704 in exon 11 (39). Importantly, this polymorphism represents therefore not only a variation at the 28 

genetic sequence level but also at the protein sequence level of DISC1. At a molecular level, 29 

Hashimoto et al. (2006) found that overexpression of the serine variant of codon 704 by viral 30 

transduction resulted in a significant increase in phosphorylated ERK1/2, the more biologically active 31 

form (40). ERK1/2 in turn regulates the state of phosphorylation of tyrosine hydroxylase, the rate-32 

limiting enzyme for dopamine biosynthesis, to increase its activity and subsequent dopamine synthesis 33 

by up to two-fold (41-44). Dopamine is synthesized by converting first tyrosine into dihydroxyphenyl-34 

L-alanine (L-DOPA) by tyrosine hydroxylase, and second dihydroxyphenyl-L-alanine (L-DOPA) into 35 

dopamine by aromatic acid decarboxylase (45). [18F]-DOPA PET signal reflects aromatic acid 36 

decarboxylase function and dopamine storage capacity (45), but not directly tyrosine hydroxylase 37 

function. However, it should be noted that 1) tyrosine hydroxylase is the rate limiting step for 38 

dopamine synthesis capacity (43) and 2) the topological distribution of the [18F]-DOPA signal 39 

correlates highly with tyrosine hydroxylase immunostaining in unilaterally 6- hydroxydopamine (6-40 

OHDA)-lesioned rats, thus indicating that the [18F]-DOPA signal is strongly influenced by 41 

endogenous dopamine formed by tyrosine hydroxylase (46). 42 

 43 

In summary, preclinical findings suggest that the Ser704Cys variation affects dopamine synthesis by 44 

regulating ERK1/2 and its control over tyrosine hydroxylase activity. However, it remains unknown 45 

whether the Ser704Cys variation is associated with altered dopamine synthesis in humans. The aim of 46 

this study was therefore to test the hypothesis that serine homozygotes would exhibit increased striatal 47 

dopamine synthesis capacity relative to cysteine carrierscysteine hetero/homozygotes. 48 
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Results 49 

Demographics, scan parameters including the injected dose and substance use characteristics are 50 

shown in table 1. A total of 46 serine homozygotes and 56 cysteine carrierscysteine 51 

hetero/homozygotes (which encompass 45 heterozygotes and 11 cysteine homozygotes) were included 52 

in the study. The genotype frequencies (shown in table 1) did not significantly deviate from Hardy–53 

Weinberg equilibrium (χ2 =1.422 with p=0.233), with a Minor Allele Frequency (T allele) of 0.335. 54 

Age (year) and Ki
cer (1/min) in the whole striatum were normally distributed across the two groups 55 

whereas injected dose (MBq) was not. There was no significant difference in age between groups 56 

t(100)=1.588, p=0.115 (independent t test) and no significant difference in injected dose p=0.408 57 

(Mann Whitney test). Levene’s test indicated no difference between the variances in the two groups, 58 

F=0.398, p=0.529. The univariate ANCOVA showed that the main effect of the DISC1 SNP rs821616 59 

on the dopamine synthesis capacity in the whole striatum was significant, F (1,96) = 6.555, p=0.012, 60 

partial eta squared =0.064. The effects of the covariates were: for scanner, F(1,96)=16.573, p<0.01, 61 

partial eta squared =0.147, age, F(1,96)=1.056, p=0.307, partial eta squared =0.011, gender, 62 

F(1,96)=0.114, p=0.736, partial eta squared=0.001, ethnicity, F(1,96)=0.061, p=0.805, partial eta 63 

squared=0.001. 64 

65 
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Discussion 66 

In line with our hypothesis, we found that participants with the AA genotype (serine homozygotes 67 

(AA genotype)) forof the Ser704Cys functional DISC1 polymorphism exhibited a significantly greater 68 

Ki
cer value in the whole striatum, indicating greater dopamine synthesis capacity compared to cysteine 69 

hetero/homozygotes (AT or TT genotype)T (cysteine) carriers. This result is in accordance with 70 

preclinical evidence showing that the serine 704 DISC1 variant increases the activity of ERK1/2, 71 

which in turn enhances the phosphorylation of tyrosine hydroxylase, the rate limiting step in dopamine 72 

synthesis (41, 47). 73 

Limitations 74 

The main limitation of this study was that we used data from three different PET scanners, which 75 

could add error variance. However, scanner was included as a covariate to adjust for this. Furthermore, 76 

the effect of the Ser704Cys polymorphism remained significant when we only included subjects from 77 

PET scanner 2 (F(1,28) = 5.273, p=0.029 (N=16 cysteine carrierscysteine hetero/homozygotes, N=17 78 

serine homozygotes)), but not PET scanner 1 only (F(1,30) = 0.766, p=0.388, (N=19 cysteine 79 

carrierscysteine hetero/homozygotes, N=16 serine homozygotes)) and PET scanner 3 only (F(1,29) = 80 

0.426, p=0.519, (N=21 cysteine carrierscysteine hetero/homozygotes, N=13 serine homozygotes)). It 81 

is important to recognise that we measured the final step in the synthesis of dopamine, the conversion 82 

of L-DOPA into dopamine via aromatic acid decarboxylase (AADC). However, the parameter 83 

measured could be affected by other variables including the uptake of L-DOPA into the brain, 84 

although this should be controlled for by the reference region and there is no a priori reason to 85 

consider that this should be affected by the DISC1 protein. Importantly, this polymorphism was 86 

chosen based on a specific prior hypothesis. Although there was evidence to reject the null hypothesis, 87 

the p-value would not survive genome-wide correction and therefore the result requires replication. 88 
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Implications for mental disorders 89 

The Ser704Cys polymorphism has been associated with schizophrenia with an odds ratio in the range 90 

of 1.3 – 4.18 in various populations including European (48), mixed European/African-American (49), 91 

and Chinese Han (50-52). Inconsistencies have been found, with some studies indicating increased 92 

risk associated with the A allele (serine) (48, 51), whilst others the T (cysteine) allele (50, 52) and no 93 

association found (25) mainly in the Japanese population (53-55). A recent meta-analysis has also 94 

reported association of the A (serine) allele with schizophrenia in Chinese (OR=1.338) and Japanese 95 

populations (OR=1.524), as well as in the overall mixed race sample (56). The inconsistencies in these 96 

results might be due to different ethnic populations. It should be noted that ever expanding studies of 97 

European ancestry population level genetic variants in schizophrenia continually demonstrate no 98 

significant associations at the entire DISC1 locus (57, 58), although there is evidence implicating the 99 

DISC1 interactor phosphodiesterase 4B (PDE4B) as a genome-wide significant single gene locus in a 100 

recent large schizophrenia genome-wide association study (GWAS) (58). Whilst GWAS have made 101 

crucial advances in the understanding of the genetic of schizophrenia, the biological mechanisms 102 

directly underlying the disorder remain yet poorly elucidated (59-61). In this context, the DISC1 103 

protein has been suggested as a biological candidate of interest for investigating molecular 104 

mechanisms of mental illnesses at the protein levels (33, 62). Beyond studies of dichotomous 105 

diagnoses, the serine allele has also been associated with increased risk for poor concentration among 106 

Korean patients with schizophrenia (63), increased severity of positive symptoms and hallucinations in 107 

European patients with First-Episode Psychosis (64) and increased lifetime severity of delusions in 108 

European patients with schizophrenia (65). A potential mechanism for the increased risk could be by 109 

dysregulating the control of dopamine to lead to increased dopamine synthesis. Findings in prodromal 110 

populations show that increased dopamine synthesis is associated with increased risk for psychosis 111 

(12, 13). The difference in dopamine synthesis capacity we observe here between serine homozygotes 112 

and carriers of the alternative allele is much smaller than the differences seen in at risk subjects (14, 113 
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66). It is therefore likely that the Ser704Cys variant interacts with other genetic changes to mediate 114 

risk, potentially by affecting dopamine synthesis.  115 

 116 

The fact that the common serine allele has been described as the risk allele is compatible with 117 

schizophrenia GWAS, in which approximately 50% of the implicated index SNPs are the more 118 

common alleles (67). At the population level, the genetic susceptibility to schizophrenia is caused by a 119 

few rare variants of high penetrance (mainly copy number variants and translocations) and many 120 

common variants of small penetrance (SNPs and variable number of tandem repeats) (68). As each 121 

SNP very minimally impacts schizophrenia risk and is compatible with modern models of natural 122 

selection (67), it is expected that other genetic factors are needed, in the same individual, to increase 123 

the liability to a point of schizophrenia onset. For example, the Ser704Cys site affects interaction with 124 

nuclear distribution element-like 1 (NDEL1) and its homolog Nuclear Distribution Element 1 (NDE1, 125 

also known as NudE) (69, 70), and there is evidence for an interaction between NDEL1 rs1391768 126 

and the Ser704 allele and the NDE1 rs3784859 and the Cys704 allele on the risk for schizophrenia in 127 

European participants (71). Ser704Cys is also the binding site for proteins such as kendrin (also 128 

known as pericentrin PCNT) and Pericentriolar material 1 (PCM1) (72), which have been both 129 

described as risk factor genes for schizophrenia (73). Furthermore, environmental factors such as 130 

exposure to psychosocial stress may also interact with the Ser704Cys polymorphism to affect 131 

dopamine function and mediate risk for schizophrenia (15). Interestingly, using a transgenic 132 

expression of truncated human Disc1 protein with dominant-negative effect, Niwa et al. have shown 133 

that an interaction between DISC1 and stress exposure, as a 3 week social isolation paradigm, 134 

increased dopamine release after amphetamine challenge (34) and induced alterations in DNA 135 

methylation of the tyrosine hydroxylase gene (74). 136 

 137 

Evidence also suggests that the Ser704Cys polymorphism is a risk factor for affective disorders. The 138 

cysteine allele has been associated with major depression in Japanese population (47), and shown to 139 

form a protective haplotype for bipolar spectrum disorder with two others DISC1 SNPs (rs1411771 140 
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and rs980989) in Finnish population (75), whereas a higher serine allele rate has been found in South 141 

Indian population with bipolar disorder (76). Interestingly, increased dopamine synthesis capacity is 142 

seen in both mania (77) and bipolar psychosis (78), whilst major depression with affective flattening 143 

is characterized by a decreased synthesis capacity (79, 80). 144 

 145 

The Ser704Cys SNP has also been shown to have a functional impact at the brain level (39). 146 

Compared to healthy cysteine carrierscysteine hetero/homozygotes, serine homozygotes display 147 

increased (for the same level of performance, thus putatively inefficient) prefrontal cortex activation in 148 

the left middle and left superior frontal gyri and in the homologous right superior frontal gyrus, the left 149 

inferior frontal and cingulate cortex, the thalamus and the caudate nucleus in a verbal fluency task 150 

(81), as well as an effect on thalamic-prefrontal connectivity (82). Ser704Cys SNP has also been 151 

shown to affect activation during declarative memory task with inconsistent findings. Callicott et al 152 

(48) found decreased activation bilaterally in the hippocampal formation during a declarative memory 153 

task and increased activation bilaterally in the hippocampal formation in an N-back task in Ser704 154 

homozygotes controls compared to cysteine carrierscysteine hetero/homozygotes, whereas Di Giorgio 155 

et al (83) found increased hippocampal formation/dorsolateral prefrontal cortex coupling during 156 

memory encoding in a declarative memory task in serine homozygotes compared to healthy cysteine 157 

carrierscysteine hetero/homozygotes. 158 

 159 

In summary, our results provide unprecedented preliminary evidence that DISC1 Ser704Cys has an 160 

impact on the dopamine synthesis capacity, in a large sample of 102 healthy volunteers. Further 161 

studies should aim at 1) replicating this result in different cohorts; 2) investigating potential epistatic 162 

interactions with DISC1 and other risk genes. Genetic studies based on molecular evidence could help 163 

identify the molecular mechanism that underlies the pathoaetiology of dopamine-related disorders 164 

such as psychotic disorders, and help identify novel potential treatment targets (15). 165 
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Conclusion 166 

We found that the serine allele of DISC1 Ser704Cys (rs821616) was associated with significantly 167 

higher striatal dopamine synthesis capacity, consistently with its previous association with heightened 168 

activation of ERK1/2 which stimulates tyrosine hydroxylase activity for dopamine synthesis. This 169 

implicates the DISC1 polymorphism in altering a psychosis relevant mechanism in the brain i.e. the 170 

facilitation of greater dopamine synthesis capacity. Although, this effect of rs821616 may be of too 171 

small effect to be identified in population-based studies of end state diagnoses at their current large 172 

size, it continues to implicate the functional role of DISC1. Firstly by highlighting the role of this 173 

polymorphism at this gene in creating variation within the normal functioning of the brain, but also by 174 

indicating this function as a potential mechanism through which other rare or familial mutations for 175 

major mental illnesses could disrupt functioning and increase risk to these devastating disorders. 176 

177 
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Material and Methods 178 

Overview 179 

All participants gave informed written consent to take part after full description of the study. All 180 

studies were approved by the institutional review board and the local research ethics committee. 181 

Participants 182 

Participants were recruited via advertisement in local media based in London. One hundred and 183 

twenty-three participants underwent a [18F]-DOPA PET scan. For all participants the inclusion criteria 184 

were 1) age above 18 years; 2) capacity to give written informed consent. The exclusion criteria were 185 

1) any current medical conditions or history of medical condition (past minor self-limiting conditions 186 

were permitted); 2) history of a psychiatric disorder as determined by the Structured Clinical Interview 187 

for DSM-IV Axis 1 Disorders, Clinician Version (SCID-CV) (84); 3) history of substance 188 

abuse/dependence as determined by the Structured Clinical Interview for DSM-IV Axis 1 Disorders, 189 

Clinician Version (SCID-CV) (84); 4) history of head injury with a loss of consciousness; 5) a family 190 

history of any psychotic disorder in first- or second-degree relatives; 6) contraindications to positron 191 

emission tomography (PET) scanning (significant prior exposure to radiation, pregnancy or breast 192 

feeding). All participants provided urine samples prior to the scan to screen for drug use and 193 

pregnancy test in women. Six participants were excluded due to positive urine THC screening, 12 194 

participants were excluded to contamination of samples and 3 participants were excluded due to 195 

current psychotropic medication use. This resulted in the final inclusion of 102 participants (46 196 

females/56 males, age: 30.2±9.3 years (mean±Standard Deviation SD)). Both scanning and imaging 197 

analysis were done blind to the genotype status. 198 
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[18F]-FDOPA PET 199 

PET data were acquired using three different PET scanners. PET scanner 1 was an ECAT HR+ 962 200 

PET scanner (CTI/Siemens, Knoxville, Tennessee). The dynamic images were acquired in 3D mode 201 

with an axial field of view of 15.5 cm and reconstructed using filterback projection. PET scanners 2 202 

and 3 were two Siemens Biograph HiRez XVI PET-CT scanner (Siemens Healthcare, Erlangen, 203 

Germany) at Imanova, Centre for Imaging Sciences. PET scanner 1 and PET scanner 2-3 were 204 

identical with the only exception of the axial field of view: 16.2 cm vs 21.6 cm respectively. The 205 

dynamic images were also reconstructed using a 3D filtered back-projection algorithm (discrete 206 

inverse Fourier transform, DIFT) with a 128 matrix, a zoom of 2.6 and a 5mm isotropic Gaussian 207 

smoothing. Participants were scanned at various times of the day. Some of the imaging data has been 208 

included in prior reports but not for genetic analysis (85-88). For attenuation and model-based scatter 209 

correction, a 10 min transmission scan was performed using a 150-MBq cesium-137 rotating point 210 

source for the ECAT HR+ 962 PET scanner and a computed tomography scan (effective 211 

dose=0.36 mSv) for the Siemens Biograph HiRez XVI PET-CT scanners were acquired prior to each 212 

PET scan. Experimental protocol was consistent for all the participants (85). Participants were asked 213 

to fast and abstain from smoking from midnight on the day of the scan as tobacco use has been 214 

associated with increased striatal dopamine synthesis capacity (89) although this has not been 215 

replicated (85). Oral doses of carbidopa (150mg) and entacapone (400mg) were administrated 1hour 216 

before scanning. While the first reduces the peripheral metabolism of the tracer (90), the latter 217 

minimizes the formation of radiolabeled [18F]-FDOPA metabolites, which can cross the blood-brain 218 

barrier (91). Head movement was monitored and minimized with a light head strap. If participants 219 

moved extensively during the acquisition or got out of the scanner a second attenuation correction 220 

image was acquired at the end of the acquisition. PET data were acquired dynamically during 95 221 

minutes after bolus injection of the radioactive tracer [18F]-DOPA through a cannula inserted into a 222 

vein. Dynamic data were binned into 26 frames (PET scanner 1) and 32 frames (PET scanner 2 and 3). 223 
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Image Analysis 224 

Head movement was corrected using a frame-by-frame realignment and denoising algorithm (92) with 225 

a level 2 order 64 Battle-Lemarie wavelet filter applied on the non- attenuation-corrected dynamic 226 

images. These images were used because they include a significant scalp signal compared to 227 

attenuation-corrected images (93). Frames were realigned to a reference frame corresponding to the 228 

frame with the highest number of counts, i.e. obtained 7 minutes (for the ECAT HR+ 962 PET 229 

scanner-CTI/Siemens, Knoxville, Tennessee) and 17 minutes (for the Siemens Biograph HiRez XVI 230 

PET-CT scanners-Siemens Healthcare, Erlangen, Germany) after the radiotracer injection using a 231 

mutual information algorithm (94). The transformation parameters were then applied to the 232 

corresponding attenuation-corrected dynamic images. These realigned frames were summated, 233 

creating a movement-corrected dynamic image from which to extract the Time Activity Curves (TAC) 234 

for graphical analysis quantification. Standardized regions in Montreal Neurologic Institute (MNI) 235 

space were defined in the whole striatum delineated as previously described to create a Region of 236 

Interest (ROI) map (95) and in the cerebellum using the probabilistic Martinez atlas (95, 96). The 237 

cerebellum was used as a reference region as it is largely devoid of dopaminergic neurons or 238 

projections (45). A nonlinear transformation procedure on SPM8 (http://www.fil.ion.ucl.ac.uk/spm) 239 

was used to normalize the ROI map together with the [18F]-DOPA template to each individual PET 240 

summation image, in order to place the ROI automatically on individual [18F]-DOPA PET dynamic 241 

images. Influx constant Ki
cer value, (min-1) for the whole striatum was calculated relative to uptake in 242 

the reference region using a graphical approach (97), a method which has been shown to have good 243 

reliability (95). 244 

Genetic analysis 245 

DNA was extracted from blood or cheek swabs using standard methods (98). Genotyping of the 246 

rs821616 A>T SNP, was performed by KBioscience (Herts, UK, http://www.kbioscience.co.uk) using 247 
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a competitive allele specific Polymerase Chain Reaction system (CASP). Quality control procedures 248 

included negative control (water) wells and duplicate wells.  249 

Statistical analysis 250 

The normality of the distribution for all variables was examined using the Shapiro Wilk test, 251 

inspection of Q-Q plots and skewness and kurtosis values within range of ± 2. Homogeneity of 252 

variance was assessed with Levene’s Test for Equality of Variances. An alpha threshold was set at 253 

0.05 (two-tailed) for significance for all statistical comparisons. Statistical Package for the Social 254 

Sciences (SPSS) version 24 was used for all statistical analysis (IBM, Armonk, N.Y.). All data are 255 

shown as mean±SD. An univariate analysis of covariance (ANCOVA) was performed on 102 healthy 256 

controls, with the DISC1 SNP Ser704Cys variation (serine homozygotes versus cysteine 257 

carrierscysteine hetero/homozygotes) as the independent variable, Ki
cer in the whole striatum as the 258 

dependent variable and age, gender, ethnicity (table 1) and the three PET scanners separately as 259 

covariates as these variables have been previously found to influence dopamine synthesis capacity (99, 260 

100). Effect sizes are reported as partial eta squared. Independent t test and Mann-Whitney test were 261 

used to compare age and injected dose. 262 

263 
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Legend to Figure 609 

Figure 1: Mean (SEM) striatal dopamine synthesis capacity (Ki
cer value, min-1) in DISC1 rs821616 cysteine carrierscysteine 610 

hetero/homozygotes (TT and TA, N=56) and DISC1 rs821616 serine homozygotes (AA, N=46). Dopamine synthesis 611 

capacity was significantly increased in serine homozygotes compared with cysteine carrierscysteine hetero/homozygotes (F 612 

(1,96)=6.555, p=0.012). 613 

614 
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Table 615 

Table 1   DISC1 SNP rs821616   
  Total AT and TTcysteine 

hetero/homozygotes 
carriers 

serine AA 
homozygotesca
rriers 

P value 

Total genotype counts 102 45 (AT) and 11 (TT) 46 (AA)  

Females 46 21 25 

PET scanner 1 35 19 16  
0.549 iii  PET scanner 2 33 16 17 

PET scanner 3 34 21 13 

     

Age 30.2 (9.3) 31.5 (9.9) 28.6 (8.4) 0.115 i 

Tobacco smoking 
status (nonsmoker) 

75 43 32  
0.411 ii 

Tobacco smoking 
status (smoker) 

27 13 14 

Radioactivity injected 
(MBq) 

157.7 (16.2) 156.6 (16.2) 159.2 (16.4) 0.529 ii 

White European 70 35 35  
 
 
0.503 iii  

Black British/other 22 15 7 

Asian British/other 5 3 2 
Mixed ethnicity 5 3 2 
All data ± SD. 
i Independent t test 
ii Mann-Whitney U test 
iii  Pearson Chi-Square 

 616 

617 
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