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A B S T R A C T   

A role for voltage-gated calcium channels (VGCCs) in psychiatric disorders has long been postulated as part of a broader involvement of intracellular calcium 
signalling. However, the data were inconclusive and hard to interpret. We review three areas of research that have markedly advanced the field. First, there is now 
robust genomic evidence that common variants in VGCC subunit genes, notably CACNA1C which encodes the L-type calcium channel (LTCC) CaV1.2 subunit, are 
trans-diagnostically associated with psychiatric disorders including schizophrenia and bipolar disorder. Rare variants in these genes also contribute to the risk. 
Second, pharmacoepidemiological evidence supports the possibility that calcium channel blockers, which target LTCCs, might have beneficial effects on the onset or 
course of these disorders. This is especially true for calcium channel blockers that are brain penetrant. Third, long-range sequencing is revealing the repertoire of full- 
length LTCC transcript isoforms. Many novel and abundant CACNA1C isoforms have been identified in human and mouse brain, including some which are enriched 
compared to heart or aorta, and predicted to encode channels with differing functional and pharmacological properties. These isoforms may contribute to the 
molecular mechanisms of genetic association to psychiatric disorders. They may also enable development of therapeutic agents that can preferentially target brain 
LTCC isoforms and be of potential value for psychiatric indications. 

This article is part of the Special Issue on ‘L-type calcium channel mechanisms in neuropsychiatric disorders’.   

1. Introduction 

Several voltage-gated calcium channel (VGCC) subunit genes are 
found among the hundreds of loci implicating thousands of genes that 
have been revealed by genome-wide association studies (GWAS) of 
psychiatric disorders. The most notable example is CACNA1C, which 
encodes the L-type calcium channel (LTCC) CaV1.2 pore-forming 
subunit. 

In many respects the GWAS signals for VGCCs are no more impres-
sive nor transformative than most others: the effect sizes are trivial, and 
the causal polymorphisms, molecular mechanisms, and functional cor-
relates of the genetic variation are unknown. However, viewed in the 
wider context, the demonstrated involvement of VGCC genes does have 
greater implications. Firstly, LTCCs and other VGCCs play a well- 
established role in fundamental neuronal processes relevant to 

psychiatric disorders, including transmitter release, synaptic plasticity, 
and excitation-transcription coupling (Striessnig et al., 2014; Zamponi 
et al., 2015; Nanou and Catterall, 2018) and impact on learning, 
memory, and other relevant behaviours (Wankerl et al., 2010; Kabir 
et al., 2017). Secondly, complementing the GWAS data, there is evi-
dence for rare VGCC variants with penetrant effects on disease risk. 
Thirdly, altered intracellular calcium signalling has been documented in 
cells from patients with psychiatric disorders, especially bipolar disorder 
and depression (Dubovsky and Franks, 1983; Berridge, 2014; Harrison 
et al., 2021b). Complemented by emerging understanding of the struc-
ture of VGCCs (Wu et al., 2015; Tang et al., 2016), these considerations 
together provide a strong biological framework within which to inter-
pret the genomic evidence. Finally, and significantly, VGCCs are drug-
gable: calcium channel blockers (CCBs), which target the α1 subunit of 
LTCCs (Striessnig et al., 1998), are widely used for hypertension and 

* Corresponding author. Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK 
E-mail address: paul.harrison@psych.ox.ac.uk (P.J. Harrison).   

1 Current address: CNS Discovery Research, Boehringer Ingelheim, 88400 Biberach an der Riss, Germany. 

Contents lists available at ScienceDirect 

Neuropharmacology 

journal homepage: www.elsevier.com/locate/neuropharm 

https://doi.org/10.1016/j.neuropharm.2022.109262 
Received 29 June 2022; Received in revised form 9 August 2022; Accepted 17 September 2022   

mailto:paul.harrison@psych.ox.ac.uk
www.sciencedirect.com/science/journal/00283908
https://www.elsevier.com/locate/neuropharm
https://doi.org/10.1016/j.neuropharm.2022.109262
https://doi.org/10.1016/j.neuropharm.2022.109262
https://doi.org/10.1016/j.neuropharm.2022.109262
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropharm.2022.109262&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neuropharmacology 220 (2022) 109262

2

other cardiovascular indications (Braunwald, 1982), whilst the gaba-
pentinoids, which act via the α2δ subunits (Gee et al., 1996), are used for 
several conditions including sleep disorders, epilepsy and pain (Hong 
et al., 2022). 

Here we summarise: (a) genomic data implicating LTCCs in psychi-
atric disorders; (b) epidemiological evidence for beneficial therapeutic 
effects of CCBs in these disorders; and (c) molecular studies revealing 
novel LTCC isoforms that may mediate the genetic associations and 
provide genomically-informed psychotropic drug targets. As outlined 
below, LTCCs are likely of relevance to brain processes that cut across 
psychiatric diagnostic boundaries. However, given that the genomic 
evidence has been collected using current diagnostic criteria and that 
the most robust associations are seen for CACNA1C, we focus here on 
CACNA1C’s involvement in psychosis (schizophrenia and bipolar dis-
order). Nevertheless, many of the issues pertain to other LTCC genes and 
other neuropsychiatric disease phenotypes (Heyes et al., 2015; Zamponi, 
2016). 

2. LTCC genes contribute to risk for many psychiatric disorders 

The first genome-wide significant association between an LTCC gene 
and a psychiatric disorder was for CACNA1C and bipolar disorder (Sklar 
et al., 2008; Ferreira et al., 2008). This was followed by a number of 
associations between this and other VGCC loci with several psychiatric 
disorders, especially schizophrenia, as well as with a cross-disorder 
phenotype (Table 1; Cross-Disorder Group of the Psychiatric Genomics 
Consortium, 2013; Bipolar Disorder and Schizophrenia Working Group 
of the Psychiatric Genomics Consortium, 2018; Mullins et al., 2021; 
Trubetskoy et al., 2022). The latest GWAS results for schizophrenia now 
include significant associations to three of the four LTCC α1 subunit gene 
loci (Trubetskoy et al., 2022). 

The cumulative GWAS data strongly suggest a role for common 
variation in VGCC subunit genes, especially CACNA1C, in the genetic 
architecture of severe mental illness (Casamassima et al., 2010; Bhat 
et al., 2012; Harrison et al., 2021b). However, as with all GWAS find-
ings, many questions remain to be addressed, beyond the basic limita-
tion that the causal gene(s) and variant(s) at each locus need to be 
determined (Harrison, 2015; Wang et al., 2019; Mountjoy et al., 2021; 

Wainberg et al., 2022). Firstly, what is the molecular mechanism of the 
genetic association? The genomic signals are non-coding, and so likely 
impact on gene regulation and expression. However, studies to date are 
inconclusive as to the direction of effect, if any, of the risk alleles on 
CACNA1C mRNA abundance (Bigos et al., 2010; Gershon et al., 2014; 
Yoshimizu et al., 2015; Jaffe et al., 2020); the issue is relevant since 
altered Cacna1c expression in rodents affects their behavioural pheno-
type (see Moon et al., 2018). The variable results may reflect temporal or 
spatial variation of the allelic effect, for example across neuro-
development or between brain regions or cell types. Alternatively, given 
that the GWAS signal arises from an intron within the gene, a plausible 
mechanism of association is that it involves altered splicing and thence 
production of specific isoforms rather than an overall increase or 
decrease in CACNA1C expression. This possibility has yet to be tested, 
but a genotype effect on splicing is a key event for other psychosis risk 
genes (Kleinman et al., 2011; Tao et al., 2014; Xiao et al., 2017; Gandal 
et al., 2018; Zhang et al., 2022). Secondly, what is the downstream effect 
of the disease-associated genetic variation on the properties of the 
encoded channel and thence the processes and networks in which they 
participate? There are some findings showing CACNA1C genotype in-
fluences channel characteristics (Yoshimizu et al., 2015; Birey et al., 
2017), and similarly for CACNA1I (Baez-Nietro et al., 2022), but the 
overall picture remains unclear, in part because the existence of any 
genotype-associated isoform(s) has yet to be shown. It is also unclear 
how the LTCC findings relate to the dysregulation of intracellular cal-
cium signalling observed in several psychiatric disorders noted above, 
especially since much of that work was carried out in platelets and 
lymphocytes. However, the increasing evidence for expression and 
function of LTCCs in non-excitable cells indicates that a link of some 
kind is possible (Alves et al., 2019; Pitt et al., 2021). Thirdly, the 
pleiotropic nature of genetic associations across disorders raises the 
question as to which aspects of the clinical phenotype, as well as the 
pathophysiology, the LTCCs participate in (Lee et al., 2021). A parsi-
monious explanation is that they contribute to the processes underlying 
one or more of the many and diverse features observed trans--
diagnostically across the disorders, such as cognitive impairment, mood 
instability, sleep difficulties, or physical comorbidity. The temporal 
profile of LTCC expression in brain across development also needs to be 

Table 1 
Common and rare variant associations of LTCC and other VGCC genes with psychiatric disorders.  

Subunit type Channel typea Channel namea Subunit name Gene symbol Common variantsb,c Rare variantsb,d 

Alpha1 (α1) L-type CaV1.1 α1S CACNA1S Scz, XD Scz 
CaV1.2 α1C CACNA1C BD, Scz, ASD, XD ASD, BD, Scz 
CaV1.3 α1D CACNA1D Scz, XD ASD, BD 
CaV1.4 α1F CACNA1F   

P/Q-type CaV2.1 α1A CACNA1A   
N-type CaV2.2 α1B CACNA1B BD BD, Scz 
R-type CaV2.3 α1E CACNA1E MDD, XD  
T-type CaV3.1 α1G CACNA1G  Scz 

CaV3.2 α1H CACNA1H  ASD, Scz 
CaV3.3 α1I CACNA1I Scz, ASD   

Beta (β)   β1 CACNB1   
β2 CACNB2 Scz, BD, XD ASD 
β3 CACNB3   
β4 CACNB4  Scz  

Alpha2delta (α2δ)   α2δ1 CACNA2D1 MDD Scz 
α2δ2 CACNA2D2 Scz, XD Scz 
α2δ3 CACNA2D3  ASD 
α2δ4 CACNA2D4 XD Scz  

a Channel type and name are defined by the α1 subunit. 
b ADHD: attention-deficity hyperactivity disorder; ASD: autistic spectrum disorder. BD: bipolar disorder. MDD: major depression. Scz: schizophrenia. XD: cross- 

disorder (scz/BD/MDD/ADHD/ASD). 
c Common variant locus associations reported in one or more GWAS. Results in boldface are genome-wide significant in the latest Psychiatric Genomics Consortium 

analyses of schizophrenia (Trubetskoy et al., 2022) and bipolar disorder (Mullins et al., 2021). 
d Boldface denotes significant findings in the SCHEMA whole exome study of schizophrenia (Singh et al., 2022). 
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borne in mind when considering how, when, and where the genes exert 
their influence (Dedic et al., 2018; Clifton et al., 2021; Hall and Bray, 
2022). Clarifying these various genotype-phenotype relationships will 
be one of the issues to be resolved before the role of LTCCs in disease 
pathogenesis can be understood, and any potential of LTCCs as psy-
chotropic drug targets can be realized. 

Complementing the common variation, rare variants in some LTCCs, 
and other VGCCs, also confer risk for psychiatric disorders and neuro-
developmental syndromes (Table 1). The paradigm example is Timothy 
syndrome, in which autistic features are prominent together with a 
cardiac and skeletal phenotype, caused by a gain-of-function mutation 
in CACNA1C (Splawski et al., 2004) which acts, at least in part, by 
altering splicing of the gene (Panagiotakos et al., 2019). Rare (Purcell 
et al., 2014; Wang et al., 2022) and structural (Song et al., 2018) variants 
in CACNA1C have also been reported in psychosis, and rare variants in 
CACNA1C and CACNA1D identified in other neurodevelopmental syn-
dromes (Pinggera et al., 2015; Ortner et al., 2020; Rodan et al., 2021). 
Although of limited population impact, rare variants are invaluable 
because they provide greater traction on the underlying biology, and the 
findings may give clues as to the mechanisms underlying the common 
variant associations. 

In summary, there is now strong evidence that LTCCs are part of the 
genetic architecture of a range of psychiatric disorders. Attention can 
now turn to understanding the nature and mechanisms of the LTCC 
contribution to aetiology, and whether and how this understanding can 
be harnessed to advance the candidacy of these channels as targets to 
treat psychiatric disorders. 

3. Calcium channels and blockers in psychiatry 

Initial interest in the possible role of LTCCs in the treatment of 
psychiatric disorders was stimulated by the introduction of the first 
calcium channel blockers (CCBs), verapamil and diltiazem, for treat-
ment of hypertension and other cardiovascular indications. This chimed 
with a hypothesized role of aberrant calcium signalling in bipolar dis-
order and depression that was emerging around that time (Crammer, 
1977; Jimerson et al., 1979; Dubovsky and Franks, 1983; Bowden et al., 
1988), and with the fact that some antipsychotic drugs were shown to be 
calcium channel antagonists, potentially contributing to their mode of 
action (Gould et al., 1983). A number of case reports, case series, and 
small clinical trials followed, in which patients with bipolar disorder, 
depression or schizophrenia were treated with CCBs, mainly verapamil. 
Despite initial enthusiasm, findings were not robust and interest waned 
(Hollister and Trevino, 1999), and a systematic review in bipolar dis-
order concluded that there was an absence of evidence from randomized 
controlled trials to support their use (Cipriani et al., 2016). 

Discovery that LTCCs are part of the genetic risk architecture for 
neuropsychiatric disorders has rekindled interest in these channels as 
therapeutic targets (Dubovsky, 2019; Harrison et al., 2020b). Contem-
porary therapeutic investigations are using the newer dihydropyridine 
CCBs (Ostacher et al., 2014; Atkinson et al., 2019; Burdick et al., 2020; 
Vahdani et al., 2020). For example, Ostacher et al. (2014) studied effects 
of isradipine on bipolar disorder, selecting patients based on CACNA1C 
risk genotype. However, these recent studies are all exploratory or pilot 
in nature, and have not yielded any conclusive results. While larger 
clinical trials are awaited, two further approaches are being adopted to 
advance the candidacy of CCBs in psychiatry: the first is to use phar-
macoepidemiology to provide clues as to whether the existing CCBs are 
associated with differences in risk for, or outcome of, psychiatric dis-
orders. The second approach is to explore the identity and characteris-
tics of LTCCs and their subunits in more detail, with particular regard to 
the possibility that they may differ in the brain compared to peripheral 
tissues. These issues are relevant both for explaining the mechanisms by 
which the genes may contribute to risk for psychiatric disorders, and for 
the possibility that modified CCBs – or other therapeutic agents inter-
acting with these channels in order to enhance, inhibit, or modulate 

their functioning – could be of value. 

3.1. Pharmacoepidemiology 

The advent of electronic health records has enabled large-scale 
pharmacoepidemiological studies of patients who are prescribed CCBs 
for cardiovascular indications to study whether their use is associated 
with an altered incidence or course of psychiatric disorders. A study of 
the Swedish population found that patients with schizophrenia or bi-
polar disorder had fewer psychiatric hospital admissions when they 
were taking CCBs compared to when they were not (Hayes et al., 2019). 
Other studies have compared people taking CCBs with people taking 
another class of antihypertensive drug, to control for the confounding 
effect of hypertension. Being conducted more recently than the initial 
clinical studies mentioned above, the pharmacoepidemiological work 
focuses on the dihydropyridine CCBs which have largely superseded use 
of verapamil and diltiazem; of the dihydropyridines, amlodipine is much 
the most frequently prescribed. 

The pharmacoepidemiological findings are somewhat varied, but 
overall there is evidence for a reduced risk of onset or recurrence of 
depression with CCBs compared to beta-blockers, and some evidence for 
CCBs compared to diuretics; in contrast, CCBs are inferior compared to 
angiotensin II receptor blockers (Boal et al., 2016; Cao et al., 2019; 
Kessing et al., 2019; Agustini et al., 2020; Colbourne et al., 2021; Shaw 
et al., 2021). A broadly similar pattern for CCBs relative to other anti-
hypertensive classes pertains for several other psychiatric disorders 
(Colbourne et al., 2021), delirium (Harrison et al., 2020a), and neuro-
degenerative disorders (see Harrison et al., 2021a). 

An important caveat is that these pharmacoepidemiological studies 
considered CCBs as a class, and did not take the varying blood-brain 
barrier penetrability of individual drugs into account. It seems likely 
that any psychiatric benefits of CCBs would be greater for those drugs 
that do enter the brain and thereby have the opportunity to block 
neuronal LTCCs compared to those that do not. Notably, three of the 
CCBs mentioned thus far – verapamil, diltiazem, and amlodipine – all 
have low blood-brain barrier penetrability unlike the other dihy-
dropyridines (such as felodipine, isradipine and nifedipine). We tested 
this hypothesis in a retrospective cohort study using a large electronic 
health records network (Colbourne and Harrison, 2022). We found that, 
over a two-year exposure period, the brain-penetrant drugs were 

Fig. 1. Brain-penetrant calcium channel blockers and risk of psychiatric 
disorders. The incidence of a first recorded psychiatric diagnosis during a two- 
year period is lower in patients taking a brain-penetrant CCB than those taking 
amlodipine, a CCB with low brain permeability (n = 44,732 in each cohort). 
Cohorts were propensity score matched at baseline for age, sex, race, blood 
pressure, body mass index, and for a range of medical diagnoses and medica-
tions. Risk ratios are shown with 95% confidence intervals. Similar results were 
seen when brain-penetrant CCBs were compared with verapamil and diltiazem. 
Data taken from Colbourne and Harrison (2022). 
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associated with a lower incidence of a first psychiatric diagnosis 
compared to the other CCBs. This applied across a range of common 
disorders, as well as for delirium and dementia, with an overall risk 
reduction of 12% (Fig. 1). Small reductions in risk were also seen for 
recurrence of prior diagnoses. In addition, the brain-penetrant CCBs 
were associated with a lower overall incidence of psychiatric disorders 
compared to the angiotensin receptor blockers. This in contrast to the 
earlier finding that angiotensin II receptor blockers were associated with 
a lower incidence when compared to all CCBs (of which the large ma-
jority of prescriptions were for non-penetrant CCBs). 

Pharmacoepidemiological studies are observational, subject to re-
sidual confounding, and cannot demonstrate causality nor mechanism. 
Nevertheless, the results suggest that brain-penetrant CCBs may have 
some relative benefits on the risk of common psychiatric disorders. As 
such the findings provide impetus to explore further the role of brain 
LTCCs in these disorders and as treatment targets for novel psychotropic 
drugs. Notwithstanding this rationale, the existing CCBs, even those that 
readily access the brain, are likely not optimal at occupying central 
LTCCs, and even if this could be achieved at higher doses, it would come 
at the price of significant side-effects due to their cardiovascular actions. 
A more attractive option would be to modify CCBs to enable them to 
preferentially block brain VGCCs. 

3.2. Towards brain-selective LTCC drugs 

The potential to selectively target brain LTCCs is afforded by the 
presence of brain-enriched isoforms. (Note that the term ‘isoform’ is 
sometimes used to refer to LTCC subtypes, e.g. CaV1.2 vs CaV1.3, but 
here we use it in its formal sense to refer to alternative mRNA transcripts 
and proteins expressed from a single gene). It has been known for a 
while that alternative splicing of specific exons within individual LTCC 
genes is an important mechanism contributing to the functional di-
versity of the resulting channels (Lipscombe et al., 2013; Lipscombe and 
Andrade, 2015). CACNA1C contains many alternatively spliced exons, 
including exons 8/8A, involved in Timothy syndrome, and exons 21/22, 
31/31a, and 33. These exons have been shown in various ways to impact 
upon channel kinetics, state-dependent inactivation, and dihydropyr-
idine binding (Soldatov et al., 1995; Zuhlke et al., 1998; Liao et al., 
2007; Tiwari et al., 2006; Hu et al., 2017; Li et al., 2017). These splicing 
events can be developmentally regulated and tissue-specific, including 
some exons that are retained in brain (e.g. exon 22; Tang et al., 2007). 

Recently, application of long-range cDNA sequencing has revealed 
many new splicing events in LTCCs and enabled identification of the 
repertoire of full-length transcripts within which alternative exons occur 
(Clark et al., 2020). Prior to these technical advances, methods primarily 
focused on individual exons or segments of the gene, and could not 
readily detect previously unannotated exons. The long-read data high-
light that pre-existing transcriptome annotations for CACNA1C are far 
from complete, and give a misleading picture (Clark et al., 2020; Hall 
et al., 2021). Importantly, several of the newly identified human CAC-
NA1C isoforms are more abundant than the annotated isoforms, and are 
enriched in brain compared to heart or aorta (NALH, SMH, HL, PJH, 
WH, EMT, unpublished observations). Moreover, some of the new iso-
forms are predicted to encode channels that vary in their function 
and/or pharmacology. The isoforms arise from multiple sources, 
including alternative transcription start sites, inclusion of novel exons, 
and different combinations of known exons. There is also heterogeneity 
at the 3′-end encoding the carboxy terminal domain. Some of the novel 
isoforms are common to humans and mice, whereas others differ be-
tween these species (SMH, NALH, PJH, WH, EMT, unpublished 
observations). 

Many questions remain regarding the significance of these observa-
tions. It is not known which of the novel transcripts are translated and 
whether transcript abundance predicts protein abundance. Nor is it 
known where they are expressed (in terms of cell type and subcellular 
location), nor how they are regulated. It also remains to be determined 

whether the novel isoforms contribute to the mechanism by which ge-
netic variants in CACNA1C influence risk for psychiatric disorders. 
Furthermore, the predicted functional and pharmacological differences 
between the predominant isoforms in brain and periphery need to be 
empirically tested using a range of methods. Given the species differ-
ences mentioned, the approaches will need to include human model 
systems, such as induced pluripotent stem cell-derived neurons and 
other relevant cell types (De Los Angeles et al., 2021). Finally, it is 
important to bear in mind that even an optimal centrally-acting dihy-
dropyridine may not achieve full blockade due to the membrane po-
tential of neurons (Xu and Lipscombe, 2001). 

Notwithstanding these important caveats, the recent molecular 
findings provide a tantalizing possibility that brain-enriched isoforms of 
CACNA1C - and other VGCCs - could be preferentially targeted, allowing 
therapeutic agents for psychiatric disorders with greater central potency 
and fewer peripheral side-effects (Harrison et al., 2020b; Hall and 
Tunbridge, 2021). Certainly, their existence complements the opportu-
nities, and difficulties, that exist in terms of identifying drugs that can 
target one LTCC selectively from another, such as CaV1.2 vs. CaV1.3 
(Zamponi et al., 2015; Ortner et al., 2017; Wang et al., 2018; Lanzetti 
and Di Biase, 2022). 

4. Conclusions 

The diverse and cumulatively compelling evidence outlined above 
suggests that LTCCs, and some other VGCCs, contribute to the mecha-
nisms underlying serious mental illnesses. Compared to most of the 
genes linked to these disorders, considerably more is known about the 
function and structure of the encoded proteins. Critically, CCBs and 
gabapentinoids show that LTCCs are druggable and, moreover, that 
these drugs can impact on psychiatric phenotypes. These factors 
together give LTCCs a high priority in the efforts to leverage genomic 
discoveries to clarify the pathophysiology and advance the pharmaco-
therapy of serious psychiatric disorders (Breen et al., 2016; Birnbaum 
and Weinberger, 2020; Harrison et al., 2022). Detailed functional 
characterization of LTCC gene isoforms that are preferentially expressed 
in brain, and those that are modulated by psychiatric risk genotype, will 
be a key part of this endeavour. 
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