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ABSTRACT 
Older adults exposed to enriched environments (EE) maintain relatively higher levels of cognitive 
function, even in the face of compromised markers of brain health. Response speed (RS) is often used as 
a simple proxy to measure the preservation of global cognitive function in older adults. However, it is 
unknown which specific sensory, decision, and/or motor processes provide the most specific indices of 
neurocognitive health. Here, using a simple decision task with electroencephalography (EEG), we found 
that the efficiency with which an individual accumulates sensory evidence was a critical determinant of 
the extent to which RS was preserved in older adults. Moreover, the mitigating influence of EE on age-
related RS declines was most pronounced when evidence accumulation rates were shallowest. Our results 
suggest that EEG metrics of evidence accumulation may index neurocognitive vulnerability of the ageing 
brain. 
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Cognitive deficits occurring with healthy or pathological ageing catalyse a broad range of challenging 
consequences1–5 and are marked by large inter-individual variability6–8. Robust evidence has emerged over 
the past three decades demonstrating a powerful positive influence of enriched environments (EE), such 
as education, leisure and work activities, on the preservation of cognitive function9–15. It has become 
increasingly apparent that older adults who have been exposed to EE can maintain high levels of 
cognitive function, despite objective evidence of compromised brain health, such as grey matter atrophy17 

in otherwise healthy individuals, and disease-related neuropathology18 in clinical conditions including 
Alzheimer’s19, stroke20, multiple sclerosis21, and Huntington’s Disease22.  
 
The speed with which older adults respond to sensory input – hereafter referred to as response speed – 
has been taken as a robust index of an individual’s vulnerability to cognitive decline23–28. Compelling 
longitudinal work with 861 older participants has shown that response speed on simple decision tasks 
predicts a 50-60% increased risk of developing a full diagnosis of dementia over a four-year period, even 
when controlling for known risk factors for the disease (including age, cerebrovascular disease, genetic 
susceptibility, mood, cognition, and education27, see also25,26). Moreover, emerging results from a large 
(N=2832) multicentre clinical trial using computerised speed-based cognitive training in older adults 
shows that training this capacity may lower the risk of developing clinical symptoms of dementia29, adding 
to evidence that training response speed may causally improve neurocognitive health in older adults30–33. 
In further support of response speed as a meaningful proxy for healthy neurocognitive ageing, 
monozygotic twin pairs that have been exposed to greater levels of enrichment throughout life show 
relatively faster response speeds in later years34. 
 
Yet response speed is the outcome of multiple sensory, decisional, and motoric computations, and it 
remains unclear which of these neural processes account for the close association between response 
speed and neurocognitive health in older adults. Identifying the extent to which discrete 
neurophysiological processes predict response speed in older individuals would help to elucidate the 
causal mechanisms underpinning the association between cognitive capacity and the neurocognitive 
health of the ageing brain. Here, we investigate the hypothesis that the association between response 
speed and brain health in older adults may arise from deficits in the accumulation of sensory evidence 
during the formation of a perceptual decision (e.g.41,47 but see also 41,48,49, for a recent review see50). The 
centro-parietal positivity (CPP) is an extracranial human EEG signal which exhibits the key characteristics 
of evidence accumulation signals observed using invasive electrophysiological recordings in animals51,52. 
Specifically, it rises with the strength of available sensory evidence and peaks prior to an individual’s 
response. Moreover, the CPP is supramodal (occurring irrespective of the modality of sensory input), 
exhibits evidence accumulation dynamics across a multitude of perceptual tasks53–57, and is separable from 
both early visual processing and motor preparatory activity, thereby reflecting a distinct intermediate 
neurophysiological process between early sensory analysis and the motor response51,52. Recent work on a 
perceptual decision-making (choice reaction time) task showed that the CPP build-up rates were 
shallower in older relative to younger adults41. However, the potential for CPP build-up rate to account 
for individual differences in response times in older adults remains unclear. In younger adults, the CPP 
has been repeatedly shown to capture individual variability in response speed51,52,58–62. Moreover, we have 
recently observed that younger individuals with enhanced structural (white matter macrostructural 
organisation of the superior longitudinal fasciculus) and functional connectivity (resting state functional 
MRI connectivity) within the dorsal FPN accumulate sensory evidence at a steeper rate, indexed via the 
build-up rate of the CPP which, in turn, facilitates faster response speed62. Converging evidence from 
neuroimaging63, modelling work64, and causal manipulation techniques65,66 suggest that response speed in 
older adults is related to structural and functional properties of the fronto-parietal networks (FPN). This 
raises the possibility that the established relationship between the FPN and individual differences in 
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response speed in older adults64–67 might arise from an individuals’ capacity to accumulate sensory 
evidence.  
 
In the current study EEG was used to isolate neural metrics indexing the discrete processing stages 
underpinning perceptual decisions while a group of older  adults performed a variant of the random-dot 
motion detection task69. We tested the hypothesis that neural markers of sensory evidence accumulation 
(build-up rates of the CPP51,52) best capture individual variations in speeded target detections, over and 
above any influence of other neurophysiological processes contributing to the timing of response. These 
included early target selection (N2c latency and amplitude70–73), sensory evidence accumulation (CPP 
onset latency or starting point62,68,70), decision criterion, or bound (amplitude of the CPP60), and motor 
preparatory activity (response-aligned build-up rate, stimulus-aligned peak latency, and amplitude of beta 
band activity (13-30 Hz) in the hemisphere contralateral to the motor response41,62).  In addition, we 
assessed the beneficial effects of EE using a well-validated assessment tool that investigates occupational, 
professional, and leisure engagements74. A lifetime of EE was hypothesised to offset age-related deficits 

in response speed (e.g.34,75,76). Critically, in keeping with the phenomenon of cognitive reserve 

(e.g.9,17,18,see 19 for a review), we hypothesised that the beneficial influence of EE on age-related declines 
in response speeds would be moderated by shallower build-up rates of the CPP (i.e. would be most 
pronounced for individuals with relatively less efficient evidence accumulation).    
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RESULTS 

Individuated neurophysiological metrics indexing visual response speed were isolated using a 
perceptual-decision making EEG task  

Seventy two participants (41 older M=73 years, SD=5, range = 63-87 and N=31 younger M=24 years, 
SD=3, range = 18-28) performed a variant of the random-dot motion task69 while 64-channel EEG was 
recorded to isolate eight distinct, previously validated neural metrics62,68: early target selection (N2c 
amplitude and latency70, sensory evidence accumulation (CPP starting point (onset latency), build-up rate 
(slope), and decision bound (amplitude)41,51,60, and motor preparation (left hemisphere beta (LHB) build-
up rate (slope), timing (stimulus-aligned peak latency), and threshold (amplitude41,51), see Fig. 169. 
 

 
Figure 1. The perceptual-decision making 
EEG task used to isolate individuated 
neurophysiological metrics indexing visual 
response speed. A. During the random-dot 
motion detection task participants fixated centrally 
while two patches of randomly moving dots were 
presented peripherally (centred at 10° of visual 
angle either side and 4° visual angle below the 
fixation square) in both hemifields. During ‘target’ 
trials, 90% of the dots in one hemifield 
transitioned from random to coherent motion in 
either an upward or a downward direction. Targets 
remained on the screen for 1s, or until the 
participant pressed the button signalling the 
detection of coherent motion in either direction. If 
a fixation break occurred during a trial (either a 
blink or a gaze deviation >4° left or right of 
centre), the task halted (stationary dots) until 
fixation returned to the central fixation dot. 
Participant response speed was assessed via a 
right-hand button press for target detection 
(coherent motion in either upward or downward 
direction). B. Eight EEG metrics were isolated. 
The EEG waveforms and topoplots depicted are 
for visualisation of the relevant components only 

and are taken from an independent group of healthy younger adults (N=5662). For the response-aligned 
components, see Supplementary Fig. 3. 

Response Speed Measures Are Sensitive to both Age and EE 

Behavioural analyses (Fig. 2A) indicated that this task was sensitive to age-related deficits in response 
speed. The older adults were markedly slower at responding, as evidenced by significantly slower 

response times (RTs) to the visual targets relative to the younger adults (F1,70 =38.34, p<.001, partial !2=
 

0.35, BF10=287907.20; older M=593.33ms, SD=125.40; younger M=439.05ms, SD=67.87; Fig. 2A). 
Target detection accuracy was high for the overall sample 95.92% (SD=5.29, range 71-100%), but 
nonetheless the older adults were less accurate at detecting coherent motion than their younger peers 
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(older: M = 94.40%, SD = 6.3%; younger: M=97.90, SD=2.60%; F1,70 = 8.12, p=.006, partial !2
 
= 0.10, 

BF10=7.17). Critically, the age-related declines in RTs remained significant even after covarying for 

differences in accuracy (F2,69 = 27.16, p<.001, partial !2= 0.44). 
 
We next sought to verify previously reported associations between a lifetime of EE and response speed 
e.g.34,75. For this, we modelled RT from the random-dot motion task as a function of environmental 
enrichment using the Cognitive Reserve Index questionnaire (CRIq74) in the older adult cohort only. The 
CRIq is a previously validated semi-structured interview which assays levels of cognitive stimulation 
through the assessment of three domains of activity throughout an individual’s lifetime: Education, Work 

Activities, and Leisure Activities (see methods for details). As the neuroprotective effects of EE are posited 
to accumulate over the course of a lifetime77, we collected this information in the older cohort only. As 
expected, this model was statistically significant, and EE (the overall model) explained 20.5% of the 
variance of RT (R2adj =.21, F3,36=4.36, p=.01, partial η2=.27). Consistent with previous work34,75, this effect 
was driven by the CRI Leisure subscale, which accounted for independent variance in the modelling of RT 
(Standardized β=-.45, t=-3.13, p=.003, 95% CI [-4.98 -1.06]), such that older adults with greater exposure 
to enriched leisure activities exhibited faster visual response speeds (Fig. 2B). In contrast, neither CRI 
Education (Standardized β=.06, t=.41, p=.69, 95% CI [-2.73 4.10]) nor CRI Work (Standardized β=.31, 
t=1.94, p=.06, 95% CI [-.09 3.93]) accounted for independent variance in RT. In order to obtain accurate 
parameter estimates for the relationship between CRI Leisure and RT, not influenced by the non-
informative signals, CRI Leisure was entered into a separate linear regression model. This model explained 
13.2% of the variance (Cohen’s F2=.18) in RT (Standardized β=-.39, t=-2.63; F(1,38)=6.93, p=.01, 95% CI 
[-4.61 -.60], partial η2=.15, Fig. 3A).  
 
Bayesian Linear Regression analyses modelling RT as a function of each CRI subscale provided additional 
support for the results of the frequentist statistics (Supplementary Table 4). Any model including CRI 
Leisure indicated a Bayes Factor at least 2.9 times more in favour of H1 than H0 (Supplementary Table 4). 
In contrast, Bayes Factors for both CRI Work and CRI Education (independently and combined) provided 
anecdotal evidence for the null hypothesis (i.e., there was no evidence to suggest that these factors 
account for independent variance in RT; all three BF10<.88 and >.03). This suggests that an individual’s 
leisure engagements help to mitigate age-related declines in visual response speed. An exploratory analysis 
conducted to investigate which specific aspects of leisure activities may have contributed to this effect 
implicated using modern technology (t39=-4.37, p<.001), engaging in social activities (t26.88=-4.49, p<.001), 
and attending events such as conferences, exhibitions and concerts (t32=-3.98, p<.001; Supplementary Fig. 
3, for further information see Supplementary Results 1 and Supplementary Results 2).  
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Figure 2. Response Speed Measures on the Decision Task Sensitive to both Age and EE. A. 
Healthy ageing was associated with markedly slower response times (RT) to perceptual targets, with large interindividual 
differences in response speed. During a variant of the random-dot motion task, older participants were, in general, slower to 
respond, relative to their younger peers, suggesting this measure was sensitive to age-related deficits in response speed. Each 
individual dot represents a participant (lower panel), and the distribution is captured by a violin plot for the two groups (upper 
panel). B. A lifetime of enriched environments (EE), captured by the composite score of Cognitive Reserve Index Questionnaire 
(CRIq74) varied according to individual differences in response speed in the older adults. This effect was driven by the Leisure 
subscale of the assessment which is visualised here as a function of RT.  

Individual differences in response speed are captured by sensory evidence accumulation rate  

The analyses thus far have confirmed age-related differences in behavioural markers of response speed - a 
validated behavioural measure of cognitive resilience (see also Supplementary Results 4). We next sought 
to understand how each neural metric related to individual differences in response speed using a 
hierarchical regression model to isolate the contribution of each neural metric, over and above those 
which temporally preceded it.  
 
To determine the explanatory power of the neurophysiological signals for predicting behaviour, over and 
above the known variance accounted for by older age, Age and the Age*RT interaction term were entered 
as nuisance variables (both centred to avoid multicollinearity) in the first step of the model. 
Unsurprisingly, both of these nuisance variables offered significant improvements in model fit, as 
compared with the intercept-only model (R2adj =.50, p<.0005, Fig. 4). Neither N2c latency (R2adj = .50, 
p=.77), N2c amplitude (R2adj =.50, p=.21) nor CPP onset (R2adj =.49, p=.87) offered any additional 
improvement in model fit.  
 
CPP build-up rate significantly improved the model performance, accounting for an additional 12% of 
the variance (R2adj =.61, R2change =.12, p<.0005, Fig. 4, Table 1), such that steeper CPP slopes, indicative of 
a faster build-up rate of sensory evidence, were associated with faster response speeds. Adding CPP 
amplitude offered a further significant improvement in the model, such that individuals with lower CPP 
amplitudes showed faster RTs (R2adj =.66, R2change =.05, p=.002).  
 
While LHB slope explained no additional variance in RT (R2adj =.66, R2change =0, p=.70), stimulus-aligned 
LHB peak latency significantly improved the fit, such that an earlier peak latency of this motor 
preparatory marker was associated with faster RT (R2adj =.74, R2change =.05, p=.002). Finally, adding LHB 
amplitude offered no significant improvement in the model (R2adj =.71, R2change=0, p=.18; see Fig. 4 for 
the parameter estimates from this model). For additional analyses highlighting the validity of stimulus-
aligned LHB latency as a marker of motor preparatory activity see Supplementary Results 4 and for 
detailed frequentist statistics from this modelling procedure see Supplementary Table 2.  
 
In order to isolate the variables explaining independent variance in RT over and above that explained by 
other non-informative signals, age, the age*RT interaction, CPP build-up rate, CPP amplitude, and LHB 
peak latency were entered into a single separate linear regression model. When these five independent 
variables were included in the final model, they accounted for 71.4% of the variation in RT (F5, 65=36.02, 
p<.0005; Cohen’s F2=2.85; Table 1). A post-hoc power analysis indicated that with 72 participants, 6 
tested predictors (CPP build-up rate, CPP amplitude) and 2 control variables (Age and Age*RT 
interaction) 88.79% power was achieved (effect size f2=.29, G*Power 3.1).  
 
Finally, to further establish the utility of these signals as specifically sensitive to individual differences in 
ageing, we repeated this linear regression model (with CPP build-up rate, CPP amplitude, and LHB peak 
latency), just for the older cohort. This model accounted for 48.7% of the variation in RT (F3, 37=13.66, 
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p<.0005) and CPP build-up rate (stand. β=-.66, p<.0005), CPP amplitude (stand. β =.27, p=.05) and LHB 
Latency (stand. β=-.31, p=.013) all accounted for independent variance in response speed.  
 
Table 1. Parameter estimates from the final linear regression model for reaction time (RT) as a 
function of the neurophysiological signals  

Signal Stand. β t p 
 

95% CI 

Age*RT .26 3.80 <.0005 [.01, .02] 

Age .50 6.86 <.0005 [1.84, 3.35] 

CPP build-up rate -.45 -5.16 <.0005 [-1139.40, -503.88] 

CPP amplitude .26 3.13 .003 [.94, 4.26] 

LHB Latency .24 3.39 .001 [.09, .36] 

Note. Age*RT, age, evidence accumulation (CPP) build-up rate, CPP amplitude, and LHB latency exerted partially independent influences on RT, 
together accounting for 71.4% of the variation (adjusted R2 value) in RT. The absolute value of standardised (Stand.) β represents the importance 
of each predictor, independent of the unit of measurement. CI denotes confidence interval for β. 
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Figure 4. Individual differences in response speed are captured by sensory evidence 
accumulation build-up rate. A. Associations between response speed (RT) and the EEG variables. Results from the 

final regression model of RT are reported in Table 1. Note the absolute value of all standardised beta values were plotted for 
visualisation purposes and nuisance variables entered from the first step in the model are not visualised here. B. The relationship 
between CPP build-up rate and RT for older and younger adults. CPP build-up rate was directly associated with an individuals’ 
response speed. Moreover, an individuals’ capacity to accumulate sensory evidence indirectly impacts response speed by 
influencing CPP amplitude (C) and Beta latency (D), both of which mediate the association between CPP build-up rate and 
response speed.  

Finally, to validate these results, we calculated the Bayes Factor Inclusion probabilities (BF10) with a 
Bayesian linear regression using a Jeffrey–Zellner–Siow prior (JZS78; r scale covariates = 0.354), which 
can be interpreted such that BFinclusion, or BF10 values above 1 indicate strength of evidence in favour of 
the alternative and values below 1 indicate the strength of evidence in favour of the null. In keeping with 
the frequentist analyses, the Bayesian regression model for RT indicated strong support for the alternative 
hypothesis for age*RT (BF10= 129.39), age (BF10=13404.20), CPP slope (BF10=1307.327), CPP amplitude 
(BF10=12.64), and LHB latency (BF10=50.81). There was no statistical evidence to suggest that N2c 
amplitude (BF10=.74), N2c latency (BF10=.55), CPP onset (BF10=.75), LHB slope (BF10=.74) or LHB 
amplitude (BF10=.95) influenced RT (see Supplementary Table 3 for further details of this Bayesian linear 
model).  
 
The findings above indicate that CPP build-up rate, CPP amplitude, and LHB latency exerted direct and 
partially independent influences over RT. On the basis of previous work, we assume that the impact of 
both CPP amplitude and LHB latency on RT, is, at least in part, determined by accumulated sensory 
evidence, reflected in temporally preceding CPP build-up rate51,52,60,62. We tested this by assessing whether 
the influence of CPP amplitude and LHB latency on RT was mediated by CPP build-up rate. In both 
cases, bootstrapped mediation analyses (5000 samples) indicated that this was the case (CPP build-up 
rateàCPP amplitudeàRT indirect effect 281.98, bootstrapped SE 168.06, CI [18.00 669.46]; CPP build-
up rateà LHB latencyàRT indirect effect -220.68, bootstrapped SE 102.48, CI [-459.99 -58.22; Fig. 4C, 
D]). This demonstrates that variability in age-related deficits in RT captured by CPP amplitude and LHB 
latency are dependent, at least partly, on individual differences in the rate at which sensory evidence can 
be accumulated. These results suggest that the CPP build-up rate constitutes a critical contributor to 
interindividual differences in response speed.   

Evidence accumulation build-up rate moderates the relationship between environmental 
enrichment and response speed 

The results thus far demonstrate that individual differences in behaviour (response speed) are 
meaningfully captured both by an individual’s level of environmental enrichment and by three task-related 
neural metrics (the build-up rate of evidence accumulation, amplitude of evidence accumulation, and 
timing of motor preparatory activity). This raises the possibility that the relationship between EE and 
response speed might differ according to individual differences in evidence accumulation build-up rate.  
To address this, we tested whether each of the three neural markers significantly moderated the 
relationship between CRI leisure and RT using three separate moderation models, Bonferroni-corrected for 
multiple comparisons (alpha .05/3 moderation models => alpha-corrected threshold = .016). These 
results revealed a specific moderating influence of CPP build-up rate on the association between EE (CRI 
Leisure) and RT, as evidenced by a CRI Leisure by CPP build up rate interaction (coefficient = 32.00, 
se=10.55, t=3.03, p=.005, CI [10.61 53.39]), which remained significant when covarying for (age; 
coefficient = 31.45, se=10.81, t=2.91, p=.006, CI [9.51 53.38], Fig. 5). In contrast, no moderating 
influence was observed for CPP amplitude (coefficient = .14, se=09.71, t=1.39, p=.17, CI [-.06 .33]) or 
LHB latency (coefficient = -.02, se=.006, t=-2.48, p=.02, CI [-.03 0]). Follow-up analyses exploring the 
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conditional effects of the predictor at values of the moderator revealed that the relationship between EE 
and RT was strongest in the older adults with shallower evidence accumulation build-up rates (Fig 5; CPP 
slope .0034, Coeff = -4.23, SE=1.17, t=-3.61, p=.0009, 95% CI = [-6.60, -1.86]; CPP slope .0724, 
Coeff=-2.02, SE=.80, t=-2.52, p=.02, 95% CI = [-3.65 -.39], CPP slope .1405, Coeff =.16, SE=.98, t=.16, 
p=.87, 95% CI [-1.84, 2.16]). These findings accord with previous findings from the neurocognitive 
reserve literature, whereby the discrepancy between markers of brain health and behaviour are accounted 
for by EE. As such, these findings further suggest that the CPP build-up rate captures meaningful 
information relating to the neurophysiological health of the ageing brain. 

 
Figure 5. Moderation model demonstrating the relationship between EE and RT as moderated 
by CPP build-up rate. Note all analyses were conducted using continuous variables but are visualised here with three bins 

of equal size for CPP build-up rate.  

Table 2. Results from a Regression Analysis Examining the Moderation of the Relationship 
between RT and Exposure to Environmental Enrichment in Older Adults by Neural Metrics of 
Evidence Accumulation Rate 

  Coeff SE t p 
 
95% CI 

Intercept i1 1259.45 163.17 7..72 <.0005 [928.53 1590.38] 

CPP build-up rate (X) b1 

-

5420.91 1493.02 -3.63 .0009 [-8448.95 -2392.88] 

EE (M) b2 -4.34 1.20 -3.62 .0009 [-6.76 -1.91] 

CPP build-up rate ×EE (XM) b3 32.00 10.55 3.03 .0045 [10.61 53.39] 

R2=.53, MSE=8102.33, F3,36=13.55, p<.0005 

  

 
 

 

Feasibility of EEG markers of evidence accumulation build-up rate as a scalable proxy for 
neurocognitive health 
Our findings provide evidence that the CPP build-up rate is mechanistically linked to an extensively 
validated marker of neurocognitive health – response speed – in older adults. This invites the possibility 
that this neural marker may be used by large-scale studies as an objective, cost-effective 
neurophysiological marker of ageing brain health. Both our results presented here, and a large body of 
previous research e.g.41,60,62,68, has measured the CPP using a single electrode (most typically ‘electrode 
Pz’). This affords clear benefits for reliably assessing this signal using low-density electrode arrays with 
either in-lab or portable EEG systems. Determining the minimum number of trials that permits a reliable 
measurement of CPP parameters, such as the CPP build-up rate, is therefore crucial for facilitating 
eventual clinical translation.   
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To determine this, we performed an analysis with a subset of participants who completed at least 9 task 
blocks, all of whom had a minimum of 129 valid response-locked ERP trials (see methods). We first 
created new estimates of both RT and CPP build-up rate by randomly selecting N trials (either 20, 40, 60, 
80, 100, or 120) from the total pool of 129 trials. We repeated this random data-sampling using N trials, 
1000 times for each bin size. Accordingly, for each participant, we derived 1000 estimates of RT and CPP 
build-up rate for each of the six trial sizes (Fig. 5.A, B). We then tested whether the likelihood that the 
estimates of RT and CPP build-up rate were more likely to deviate from the true mean estimates with 
reduced trial numbers. We addressed this question using two approaches. First, we calculated the signal to 
noise ratio (SNR) of the CPP build-up rate and RT (calculated as mean / standard deviation) and ran two 
repeated measures ANOVAs (again with trial bin as the repeated measure). This analysis revealed a 

significant main effect of bin size for both RT (F5,4995=3328.28, p<.0005, partial !2 =77) and CPP build-

up rate (F5,4995=247.84, p<.0005, partial !2 =.20). In both cases the data were best explained by a linear fit 

(RT: F1,999=9351.03, p<.0005, partial !2 =.9, CPP build-up rate: F1,999=688.82, p=<.005, partial !2 =.41), 
indicating that increasing the number of trials significantly improved the signal to noise ratio. To verify 
this pattern of results, we ran Kolmogorov-Smirnov tests on the mean estimates of CPP build-up rate 
and RT to assess whether the cumulative distribution function (CDF) increased with each reduction in 
trial number. These results demonstrated that, in general, when the number of trials was reduced from 
120 the width of the distribution (CDF) changed, as can be observed in Fig 5. A, B; KS <.05 for 120 
trials vs all other number of trials; see Supplementary Table 7. This pattern of results demonstrates the 
expected effect that by reducing the number of trials, we increase the likelihood that estimates of both RT 
and CPP build-up rate deviate from the true mean estimates. Our critical question here, however, is at 
what level of SNR do we obtain reliable and behaviourally meaningful estimates of the relationship 
between RT and evidence accumulation build-up rate.  
 
In the aforementioned results, we demonstrated a large effect size for the relationship between CPP 
build-up rate and RT (Pearson’s r)= -.60. Cohen’s (1988) cut-off for a large effect size is .5. As such, we 
defined the minimum number of trials at which a reliable CPP estimate can be derived as the number at 
which we can observe a strong effect size (i.e., an effect size greater or equal to .5) for the relationship 
between RT and CPP build-up rate. To investigate this, we calculated the direct relationship, using 
Pearson’s correlation, between CPP build-up rate and RT for each of the 1000 permutations for each of 
the 6 bin sizes (20 up until 120 trials; Fig 5C). We then ran a Bayesian one sample t-test to test whether 
the estimates of effect size (r) for each bin size were significantly larger than -.5.  We found infinite 
support for the alternative hypothesis that the effect sizes for the relationship between RT and CPP 
build-up rate with 120, 100, 80, 60, and 40 trials were larger than .5 (all BF01=∞; see descriptive statistics 
Table 3). However, this was not the case for the estimates derived using 20 trials. Here, Bayes factor 
analyses revealed strong support for the null hypothesis (BF01=648.42), i.e., that the estimates of effect 
size were not greater than -.5 (Fig 5C, Table 3). As such, these results indicate that 40 response-locked 
trials are the minimum number of trials that will allow for a reliable estimation of the CPP build-up rate / 
RT relationship. With current paradigm timings, 40 trials could be obtained in less than 5 minutes, 
highlighting the potential for isolating reliable EEG metrics of evidence accumulation over relatively 
short time scales. For detailed calculations of these timings (allowing for both variability in behavioural 
performance and quality of the EEG data) see Supplementary Results 3. 
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Figure 5. A-C. Reliable Estimates of the Relationship between RT and Evidence Accumulation 
Build-Up Rate Can be Obtained With Reduced Trial Numbers. For each participant we randomly 
selected 1000 estimates of RT (A) and CPP build-up rate (slope; B) for each of the six trial bin sizes (see 
legend). Reducing the number of trials reduced the signal to noise ratio and increased the likelihood that 
estimates of both RT and CPP build-up rate deviated from the true mean estimates (A, B). Critically, 
strong effect sizes (>.50) for the relationship between CPP build-up rate and RT were observed with as 
few as 40 trials (C) suggesting that this neurophysiological marker of sensory evidence accumulation may 
be developed as a translatable assessment of brain health for older adults. 
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DISCUSSION 
Here, we provide direct support for the hypothesis that build-up rates of sensory evidence accumulation 
are a critical neurophysiological mechanism underpinning the preservation of response speed in older 
adults. First, sensory evidence accumulation was not only directly related to response speed in older adults 
but also indirectly impacted performance by modulating subsequent neurophysiological processes, namely 
the decision criterion and the timing of the motor response. Second, consistent with the concept of 
neurocognitive reserve, a lifetime of EE offset age-related deficits in response speed. Critically, CPP slope 
moderated this association, such that the mitigating influence of EE on age-related declines in response 
times was most pronounced for individuals with relatively less efficient evidence accumulation (shallower 
build-up rates of CPP). This suggests that evidence accumulation build-up rates may offer rich 
information about which older individuals may benefit most from engaging with enriched environments. 
 
The results presented here are in keeping with the concept of cognitive reserve as defined by a recent 
consensus paper13 (but see12,15,16), whereby the proxy of reserve (here EE captured by the CRIq) exerts a 
moderating influence on the relationship between markers of brain health and cognitive function13. Our 
findings show that when evidence accumulation build-up rates are relatively shallower, individuals with 
relatively higher EE can nonetheless maintain faster response speeds than those with lower EE. One of 
the predominant principles of cognitive reserve is that high EE individuals are less reliant on established 
markers of brain health for facilitating behaviour. As such our findings accord with a large body of work 
in both healthy and pathological ageing conditions demonstrating that EE facilitates a neuroprotective 
buffer to cognitive function in spite of objective markers indicative of poor brain health (e.g. grey matter 
atrophy in healthy individuals17, amyloid plaques and tangles in Alzheimer’s patients18).  
 
The mechanisms by which a lifetime of EE facilitates the preservation of cognitive function are 
unclear12,13,15,16 and an important question for future work will be to understand the neurobiological 
substrates. Emerging evidence suggests that connectivity throughout select neural networks (e.g. 
functional segregation of resting state brain networks80) and structural (white matter integrity81) may be 
candidate neurobiological mechanisms. Specifically, a number of studies have shown that connectivity 
within the fronto-parietal networks (FPN) accounts for substantial inter-individual variability in 
neurocognitive resilience in older adults (e.g.82–85). Recently, we have shown in healthy younger adults that 
individual differences in connectivity within the dorsal FPN (white matter macrostructural organisation of 
the superior longitudinal fasciculus (SLF), and resting state functional connectivity within the dorsal FPN) 
varied according to the CPP build-up rate62. In older adults, increasing evidence suggests that the SLF 
varies according to both levels of EE85, and risk factors for neurocognitive decline (e.g.84). As such, an 
intriguing question for future work is whether EE might act to alter the white matter structure of the SLF 
to preserve the efficiency of sensory evidence accumulation rates in later years. 
 
A critical question for public health and neurorehabilitation is precisely what types of engagement are 
particularly effective for promoting neurocognitive health. Here, we find that engaging in leisure activities, 
particularly the use of new technology, engaging in social activities, and attending events (including 
conferences and exhibitions) drove relationships with response speed. The focus of our work was to 
explore the neural bases of epidemiologically defined markers of cognitive health (i.e., response speed and 
EE)17,18. However, we hope that our results will spur the development of novel interventions based on 
enriching lifestyle factors to better understand scalable, affordable public health interventions to induce 

lasting, positive changes in ageing brain function and cultivate resilience to cognitive decline. 
 
Although slowed response times are often seen in healthy neurocognitive ageing (e.g.25,27), it is not the 
case that older adults show response time deficits across all tasks. Both modelling and neurophysiological 
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work has demonstrated that age-related differences in drift rate, CPP build-up rate, and response times 
are task specific (e.g.41, see50 for a review). A key insight from decision modelling work with older adults 
has been that slowed RTs may not relate purely to sluggish information processing but might actually 
reflect a strategic preference for greater caution reflected in higher decision bounds (e.g.35–37). We 
however found no evidence to suggest that older adults adopted a high decision criterion and, in fact, 
found weak evidence that older adults in our cohort reached a lower bound than their younger 
counterparts.  Thus, using the CPP as a neurophysiological measurement of the evidence accumulation 
process, we provide additional support for recent observations that increased decision bounds in older 
adults are not generalisable to all scenarios41. Although neural metrics of the decision bound accounted 
for independent variation in response speeds, this relationship was contingent on the build-up rate of the 
CPP, such that slower build up rates of sensory evidence corresponded to lower decision bounds. As 
such, our findings indicate that response speed deficits obtained on an easy detection task in older adults 
result from a core deficit in the formation of perceptual decisions, as opposed to a more cautious 
approach to the decision-making process.  
 
Consistent reports of age-related deficits in motor preparation have been reported (see50 for review).  The 
findings presented here demonstrate that age-related slowing in motor preparatory activity, indexed by 
later timing of activity in the beta band, are at least partially attributed to slower build-up rates of sensory 
evidence accumulation. Motor difficulties in neuropathological conditions (e.g. Parkinson’s disease) arise 
from progressive degeneration within the motor system but have been shown to improve with 
interventions targeting higher order cognitive areas86,87. Our findings put forward a neurophysiological 
mechanism which could facilitate such effects, potentially through strengthening of white matter dorsal 
fronto-parietal pathways55.  

 
Finally, identifying the precise stage of information processing driving slowed response speed with aging 
might hold valuable prognostic information and could provide a sensitive addition to future large-scale 
epidemiological and translational studies. Here, we provide mechanistic evidence from a targeted and 
comprehensive EEG analysis to promote such further studies. In our current and recent investigations of 
the CPP, we have measured this signal from a single EEG electrode located over centro-parietal scalp 
regions (e.g.41,62). We present further evidence here that we can obtain reliable (large effect sizes) and 
meaningful (strongly predictive of response speed) measurements of the CPP build-up rate with as few as 
forty trials.  Taken together, our work suggests that measuring the CPP via low density and potentially 
portable EEG, might have significant translational value. This would provide an objective, cost-effective, 
and clinically translatable phenotype that might be used to assay an older individual’s vulnerability to 
future cognitive decline, monitor the success of treatment protocols (e.g. drug discovery trials), provide a 
brain-based target for neurorehabilitation interventions (e.g. closed-loop neurofeedback training, and 
non-invasive brain stimulation), or isolate an objective neurophysiological signature to investigate 
network dynamics underpinning response speed deficits (e.g.90). Future neuroimaging work could test 
these hypotheses directly by incorporating short EEG assessments of decision making. 
 
Taken together our findings suggest that neural metrics of evidence accumulation build-up rate index an 
important facet of neurocognitive vulnerability in the ageing brain. Moreover, they suggest that, akin to 
grey matter atrophy measured with fMRI, CPP build-up rate holds promise as an EEG marker indexing a 
critical facet of neurophysiological vulnerability of the ageing brain that could be incorporated into large 
scale epidemiological studies.  
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METHODS 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  
Seventy-eight healthy volunteers were recruited for this study. Two older adults were excluded 
due to age ranges more than two standard deviations from the mean (these participants were 
originally recruited as age-matched controls for a parallel brain injury study). A further four older 
participants were excluded from analysis for various reasons: one was ambidextrous, one was 
experiencing a current depressive episode and two had scores of 19 and 21, respectively, on the 
Montreal Cognitive Assessment (MoCA79), suggesting possible cognitive impairment. The final 
sample included 31 and 41 older participants (see Table 2 for demographic information). All 
participants reported being right-handed, had normal or corrected to normal vision, had no 
history of neurological or psychiatric disorder, and had no head injury resulting in loss of 
consciousness. Ethical approval was obtained from the Monash Health and Monash University 
Human Research Ethics Committee prior to the commencement of the study. The experimental 
protocol was approved and carried out in accordance with the approved guidelines. All 
participants were volunteers naive to the experimental hypothesis being tested and each provided 
written informed consent. 
 
 
Table 2. Demographic Information Reported values are M (SD) 

 Age (yrs) Gender Education (yrs) MoCA 

Experiment 1     

Younger Adults 
(N=31)  

23.65 (2.87) 17 female (54.80%) 15.90 (2.27) NA 

Older Adults 
(N=41) 

72.41 (5.61) 26 female (63.40%) 16.49 (3.48) 27.46 (1.75) 

 
 

METHOD DETAILS  

Neurophysiological investigation of response speed 

Electroencephalography (EEG) was recorded continuously while participants performed a variant of the 
random-dot motion perceptual decision-making task (Fig. 152,68–70) During this task, participants fixated 
centrally and monitored two patches of 150 moving dots (each dot = 6x6 pixels), presented peripherally 
in each hemifield. During random motion, these dots were placed randomly throughout the patch on 
each frame. During coherent motion, within one hemifield a proportion (90%) of the dots was randomly 
selected on each frame to be displaced in either a downward or upward direction on the following frame, 
with a motion speed of 5° per second. Targets were defined by this seamless transition from random 
motion to coherent motion (Fig. 1; please note, images in figures 1, 2, and 3 are composite images). 
Participants signalled target detection with a speeded button press using their right index finger (RT). 
Targets were separated by intervals of random motion of 1.8, 2.8, or 3.8 s (randomized throughout each 
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block). Targets remained on the screen for 1s, or until the participant pressed the button indicating their 
detection of coherent motion. The 12 possible trial types (each a combination of one of the 3 periods of 
random motion, 2 target locations, and 2 coherent motion directions) occurred in a pseudorandom order 
with the constraint that each different trial type arose twice every 24 trials. All younger adults (N=31) 
performed 8-9 blocks of the task. N=22 older adults (who were initially recruited to the study) similarly 
performed 8-9 blocks, while the remaining older adults (who were later recruited to the study, N=19) 
performed 4-5 blocks of the task at 90 % coherent motion, and a further 4-5 blocks of the task at 25% 
coherent motion, the latter of which was not analysed for the current study. Critically, a series of t tests 
revealed there were no significant behavioural differences between the older participants recruited for the 
longer versus shorter task duration(RT F1,.39 =1.72, p=.19; Accuracy F1,39=.02, p=.88) or any of the 
neurophysiological markers (N2c amplitude F1,39 =.08, p=.77; N2c latency F1,39=-.10, p=.76; CPP onset 
F1,39=.82, p=.37; CPP slope F1,39=.67, p=.42; CPP amplitude F1,39=.11, p=.74; LHB slope F1,39=.90, 
p=.35), LHB amplitude F1,39=.52, p=.48), or LHB latency F1,39=.0, p=.99). As such the data were 
combined to examine the impact of environmental enrichment on neural and behavioural signatures of 
response speed. All participants were given a short break of 30-60 s between each block. An SR Research 
EyeLink eye tracker (Eye- Link version 2.04, SR Research/SMI) recorded eye movements, to ensure that 
participants maintained fixation. The centre of each random-dot motion patch was at a visual angle 10° 
either side and 4° below the fixation square; each patch covered 8° visual angle and consisted of 150 6 x 6 
pixel white dots. If a fixation break occurred during a trial (either a blink or a gaze deviation >4° left or 
right of centre, detected via EyeLink1000, SR Research Ltd), the task halted (stationary dots). Once 
fixation returned to the central fixation dot, the trial restarted. The fixation dot remained on screen 
throughout the entire task; however, the two peripheral patches were only present when the trial was 
initiated by the participant’s fixation on the central point. The task was run using MATLAB (MathWorks) 
and the Psychophysics Toolbox extensions91–93.  

EEG pre-processing 

Continuous EEG was acquired from 64 scalp electrodes using a BrainAmp DC system (Brain Products), 
digitized at 500 Hz. Data were processed using a combination of custom scripts and EEGLAB94 routines 
implemented in MATLAB (MathWorks). A 35 Hz low-pass filter was applied to the data off-line using a 
fourth-order Butterworth filter, noisy channels were interpolated via spherical spline, and the data were 
re-referenced to the average reference. Epochs were extracted from the continuous data from -200 to 
1500 ms around target onset. For both the ERP and LHB signals, the epochs were baselined with respect 
to 100 to 0 ms before target onset. A trial was excluded from the analysis if any of the following 
conditions applied: (1) if RTs were ≤150 ms (pre-emptive responses) or ≥ 1800 ms (responses after 
coherent motion offset); (2) if the EEG from any channel exceeded 100 µV during the interval from 100 
ms before target onset to 100 ms after response; or (3) if central fixation was broken by blinking or eye 
movement 3° left or right of centre, during the interval between 100 ms before target onset and 100 ms 
after response. Please note, EyeLink data were not saved for N=5 out of the N=41 older adults due to a 
technical error and this final step was therefore not included for this subset of participants. Nonetheless 
fixation was monitored in real-time during task performance as described in the preceding section so no 
trials with eye movements >4° from centre were included. To minimise the interaction between 
overlapping ERP components, the data were subjected to Current Source Density transformation95.  

The N2c component was measured contralateral to the target location, respectively, at electrodes P7 and 
P868,70, and the CPP was measured at electrode Pz51,52,59,68,70. The N2c and CPP signals were aggregated to 
average waveforms as a function of target hemifield for each participant. N2c latency was identified as the 
time point with the most negative amplitude value in the stimulus-locked waveform between 150-400 ms, 
whereas N2c amplitude was measured as the mean amplitude inside a 100 ms window centred on the 
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stimulus-locked grand average peak of the N2c collapsed across hemifield70. Onset latency of the CPP 
was measured by performing running sample point by sample point t tests against zero using a 25ms 
sliding window across each participant’s stimulus-locked CPP waveforms. CPP onset was defined as the 
first point at which the amplitude reached significance at the 0.05 level for 45 consecutive points70,96,97. 
CPP build-up rate was defined as the slope of a straight line fitted to the response-locked waveform51,52, 
with the time window defined individually for each participant from -150 to 50 ms post-response. CPP 
amplitude was measured as the mean amplitude between -50 and +50ms around the participants’ 
individual response.  

Data processing 

Outliers were defined in SPSS using the interquartile range (IQR), separately for the younger and older 
adults. The interquartile range is the 3rd quartile (75th percentile) minus the 1st quartile (25th percentile). 
A value was identified as an outlier if either of the following conditions were met: if the value was <25th 

percentile - 1.5*IQR or if the value was >75th percentile + 1.5*IQR. Using this method, no outliers were 
identified. 

Assessment of Environmental Enrichment 

Participants completed the Cognitive Reserve Index questionnaire (CRIq)74, a standardised semi-
structured interview designed to estimate an individual’s level of lifetime cognitive enrichment through a 
formal computational model. This model encompasses an individual’s education, work and leisure 
activities across the lifespan with consideration given to the participant’s age, providing both an overall 
age-stratified and standardised Cognitive Reserve Index (CRI) and individual standardised subscale scores 
for each of the three components. One participant did not complete the CRIq due to time constraints.  
 
Participants first reported the number of years in which they had engaged in formal education and 
additional vocational training. All occupations held since the individual was 18 years old were categorised 
using the five-point point scale provided by the CRI. These ranged from low skilled manual work (e.g. 
level 1 includes occupations like call centre operator, and gardener) to highly responsible or intellectual 
occupation (e.g. level 5 includes managing director of a big company or surgeon). Participants were 
additionally asked about their involvement in leisure activities that may be repeated with varying 
frequencies over the lifetime, including but not limited to reading, volunteering, socialising, managing 
accounts, going on holidays/trips. Activities were grouped into weekly, monthly, annual and fixed 
frequency activities, and then into whether they were completed never, rarely, often or always, and for 
how many years of life. Participant engagement in each of these domains is summarised in Supplementary 
Tables 10-12. 
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STATISTICAL ANALYSIS  

The Relationship between Age, Behaviour and EEG  

To assess age-related differences in behaviour, two one-way ANOVAs were conducted on Accuracy and 
RT. Next, to test whether the older and younger adults differed across N2c, CPP, and LHB dynamics, 
eight one-way ANOVAs were conducted with the EEG variables (N2c latency, and amplitude, CPP 
onset, build-up rate, and amplitude, LHB build-up rate, LHB amplitude, and LHB latency) as dependent 
variables, and age as a factor. To assess whether inter-individual differences in RT on the perceptual 
decision-making paradigm (RT) varied as a function of EEG signals of perceptual decision-making, the 
EEG parameters which differed in older versus younger adults (BF10>1) were each added sequentially 
into regression models in a hierarchical fashion68. Order of entry was determined by the temporal order in 
the perceptual decision-making process: early target selection (N2c latency); evidence accumulation (CPP 
onset, build-up rate, and amplitude), and motor preparation (LHB amplitude, and LHB latency). This 
hierarchical entry method was implemented to assess whether each of the separate neurophysiological 
signals improved the model fit for RT over and above the signals that temporally preceded them. All 
neurophysiological signals that improved the model fit for RT were entered into a separate regression 
model to obtain accurate parameter estimates. The Age*RT interaction term was entered as the first 
predictor in the model, and Age was entered as the second predictor. Age, and the product term 
(Age*RT) were both centred (all raw scores for each participant were subtracted from the mean score of 
the variable) to reduce multicollinearity. Please note all statistical tests were two-sided. Effect sizes of 
regression models were calculated using Cohen’s F2 using the following formula: (R2/(1-R2)). Behavioural 
data was visualised using RainCloudPlots for MATLAB98,99. The EEG signals were visualised using 
GRAMM for MATLAB100 

Moderation Models 

To elucidate the moderating effects of evidence accumulation rate, amplitude, and beta latency on the 
relationship between EE and response speed, three moderation analyses were performed using the 
PROCESS computational toolbox101,102, Bonferroni-corrected for multiple comparisons (alpha .05/3 
moderation models).  

Confirmatory Bayesian Analyses 

For all Bayesian modelling, results were compared with the null model, and JASP default settings were 
used (JZS prior, regression analyses: r scale .354, ANOVA analyses: r scale fixed effects .5). BF10 values 
are reported throughout and can be interpreted such that values above 1 indicate strength of evidence in 
favour of the alternative and values below 1 strength of evidence in favour of the null hypothesis. 

Minimum Trial Analysis 

The minimum trial analyses included all participants (N=53) who completed 8 or more blocks of the task. 
One individual was identified as an outlier (>2SD from the mean) with regards the number of trials 
included (N=109 trials) and was excluded, therefore resulting in a total of N=52 participants. All of these 
52 participants had a minimum of 129 valid response-locked trials, which we used to investigate 
remaining questions (M=183.06; SD=19.95; range 129-207).  
 
For the Bayes Factor analyses, default priors in JASP were used (Cauchy prior of .707), and the alternative 
hypothesis was set at measure 1 ~= measure 2.  
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Table 3. Effect sizes for the relationship between RT and CPP build-up rates for 6 different trial 
sizes. Only at 20 trials did Bayes factor analyses reveal strong support for the null hypothesis that 
estimates of effect size were not greater than .5. 
 

r CPP build-up rate-CPP   Mean  SD  
20 trials    -0.527   0.055   

40 trials   -0.568   0.035   

60 trials   -0.583   0.026   

80 trials   -0.590   0.019   

100 trials   -0.591   0.019   

120 trials   -0.599   0.007   
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SUPPLEMENTARY RESULTS 1 
 
Effects of environmental enrichment are independent of level of IQ  
 
To investigate whether the observed relationship between EE and response speed could reflect individual 
differences in IQ, we estimated premorbid intelligence in a subset of participants (n=36). There was no 
direct association between IQ and response speed. Critically, the relationship between EE and response 
speed remained significant after covarying for IQ, indicating that the relationship between enrichment of 
cognition was not due to individual differences in intelligence. 
 
More specifically, a subset (N=36) of the older adults completed word reading tasks commonly used to 
estimate premorbid IQ based on the Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV)103. 
Of these individuals n=17 completed the Test of Premorbid Function (ToPF), while the other n=19 
completed the National Adult Reading Test (NART)104, using updated norms. Outliers were defined in 
SPSS using the IQR, consistent with the main analyses, separately for both cohorts of older adults. One 
outlier was detected for the ToPF and was subsequently removed and imputed using the mean value 
from their group. The two cohorts differed on estimates of IQ score derived using the different word lists 
(t34=2.09, p=.04), with a subsequent Bayesian independent samples t test suggesting moderate evidence 
for a difference between the two groups, BF10 =3.26. This is likely attributable to established differences 
in the estimations produced by the measure. Nonetheless, we considered it useful to investigate using the 
data available to us, whether our effects could be attributed to a relationship between response speed and 
IQ. For this, we ran a hierarchical linear regression of RT, with IQ entered as the first step in the model. 
IQ did not account for a statistically significant proportion of the variance in RT, indicating no direct 
influence of premorbid intelligence on response speed (F(1,34) =.07, p=.80, R2adj =-.03). Critically, when the 
CRI sub-scales were added to the second step in this hierarchical model, the relationship between EE and 
response speed remained significant (R2adj =.17, R2change =.26, p=.02; F(4,31) =2.77, p=.04), demonstrating 
that the observed relationship between EE and response speed cannot be attributed to IQ.  
 

SUPPLEMENTARY RESULTS 2 
 
Characterisation of older adult participation in leisure activities 
 
To explore the leisure activities which may drive the apparent effect of EE on response speed, we 
compared the activities of those with higher versus lower levels of lifetime leisure engagement. To do so, 
we first devised two groups of older adults based on a median split of their engagement in leisure 
activities. Those with CRI Leisure subscores above the overall median score of 138.00 were considered 
High Engagement (n=20), while those with a subscore equal to or lower than 138.00 were deemed Low 

Engagement (n=21). We then examined each participant’s responses to individual activities on the CRIq. 
Participants first indicated whether they participated in the activity Often/Always, or Never/Rarely over the 
course of their lifetime, and further specified for how many years they engaged Often/Always. For 
participants who engaged in an activity Often/Always for at least one year of life, we calculated separate 
values for their engagement in each activity, representing the percentage of life years spent engaging in 
each activity since 18 years of age using the following formula: ((Years of activity)/(Age – 18)) * 100. 
Note that rounding within the CRIq causes some individuals to exceed 100.00% of life spent participating 
in a given activity. For example, if an individual worked as a nurse for 3 years, this is rounded up to 5 
years, as per the standardised questionnaire administration guidelines. Finally, we determined the 
percentage of individuals in each group who engaged in each activity Often/Always, and the mean 
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percentage of life spent engaging in each activity for each group, the results of which are demonstrated in 
Supplementary Table 5.  
 
Subsequently, we investigated group differences through a series of t tests. Those with High Engagement, 
compared to those with Low Engagement in leisure activities, spent a significantly greater proportion of 
their lives using modern technology (t39=4.37, p<.001), engaging in social activities (t26.88=4.49, p<.001), 
and attending events such as conferences, exhibitions and concerts (t32=3.98, p<.001). Using Bonferroni 
correction resulting in an adjusted α=.003, there were no significant differences in cinema or theatre 
attendance (t11.09=2.85, p=.01), vacationing (t24.83=3.11, p=.01), driving (t22.96=2.11, p=.05), reading books 
(t28.12=2.18, p=.04), or engaging in hobbies such as sports and games (t37=2.31, p=.03). No other 
significant differences were found (all p>.05). 
 

SUPPLEMENTARY RESULTS 3 
 
Calculation of the time necessary to assess 40 trials of the CPP 
 
Results from the minimum trial analyses indicate that a minimum of 40 trials would be sufficient to derive 
valid and behaviourally meaningful estimates of CPP build up rate. These trials are derived using the 
response-locked EEG signals, following data cleaning, for correctly identified target stimuli (coherently 
moving dots). Below we provide calculations both for the average time we expect necessary to obtain 40 
valid trials, and for a ‘worst case scenario’.   
 
Calculations using mean values 
 
Mean accuracy was 96%. In order to get 40 valid response locked trials, participants would need to be 
administered an extra 4% (2 trials), i.e., 42 trials in total. We calculated the percentage of EEG trials 
which were rejected by data cleaning i.e., (rejected trials/(rejected trials + valid trials), and on average 15% 
of trials were excluded following the preprocessing steps. In order to obtain 42 valid EEG trials (post 
data cleaning), an additional 15% of data would need to be collected, so 48 trials in total.  
In this case, we would present the participant with  

• 48 coherent motion trials at 1 seconds each  
o = 48seconds total 

• Each target trial would be preceded by random motion at three variable intervals (1.8s. 2.8s, & 
3.8s; 48 targets/3 random motion periods =16 at each time period) 

• [(1.8*16) +(2.8*16) + (3.8*16)] 

• [28 + 44.8 + 60.8] 
o =133.6seconds 

• Total time (48s +133.6s) = 181.6 seconds (3.03 minutes) 
 

Calculations using the worst-case scenario values (i.e., participants with lowest accuracy and 
noisiest EEG data) 
 
The participant with the lowest accuracy on the task correctly identified 71% of targets, and as such in 
order to get 40 valid trials would need an extra 29% (12 trials), i.e., 52 trials in total. While, on average 
15% of participant EEG trials were rejected during processing, in the noisiest dataset we rejected 44% of 
trials. In this scenario, in order to obtain 52 valid trials post cleaning we would need an extra 44% of data 
(i.e., 75 trials in total). 
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In this case, we would present the participant with  

• 75 coherent motion trials at 1 seconds each  
o = 75 seconds total 

• Each target trial would be preceded by random motion at three variable intervals (1.8s. 2.8s, & 
3.8s; 75 targets/3 random motion periods =25 at each time period) 

• [(1.8*25) +(2.8*25) + (3.8*25)] 

• [45 + 70 + 95] 
o =210seconds 

• Total time (75s + 210s) = 285 seconds (4.75 minutes) 
 
We note that these times do not account for EEG set-up time. Future work should address the minimum 
participant preparation time and reliability of these results from low density, portable electrode arrays. 
 

SUPPLEMENTARY RESULTS 4 

Temporal Dynamics of Evidence Accumulation are Robust Age-Related Indicators 

We next examined group-level differences in the eight electrophysiological markers using a series of one-
way ANOVAs, Bonferroni-corrected for multiple comparisons (alpha .05/8 EEG components => alpha-
corrected threshold = .006) and supplemented these with Bayesian analyses to indicate the strength of 
evidence in support of the null hypothesis.  No statistically significant difference was observed between 
older and younger adults in the latency of early target selection signals (N2c; F1,70 =2.75, p=.10, BF10=.79, 
Supplementary Table 1 for plots and additional analyses see Supplementary Fig. 2), and although there 
was weak evidence to suggest that the amplitude of the N2c differed between groups (F1,70 =6.01, p=.02, 

partial !2=.08, BF10=3.05, Supplementary Table 1, Supplementary Fig. 1A), this did not survive 
correction for multiple comparisons.  
 
In line with recent reports41, the older adults differed from their younger counterparts in metrics of 
evidence accumulation (the CPP). More specifically, timing delays were observed for several parameters 
of the CPP in older individuals; they showed a later onset (later CPP onset; F1,70=14.8, p<.001, partial 

!2=.18, BF10=96.52, Supplementary Table 1, Supplementary Fig. 1B) and slower build-up rate (shallower 
CPP build-up rate (slope); F1,70 =8.03, p=.006, partial !2=.10, BF10=6.90, Supplementary Table 1, 
Supplementary Fig. 1B). No groups differences were observed for the amplitude at response (CPP 

amplitude; F1,70=5.88, p=.02, partial !2=.08, BF10=2.89, Supplementary Table 1). We did not observe 
differences in motor preparatory activity between the two groups (LHB build-up rate (slope) F1,70=.31, 

p=.58, BF10=.28; stimulus-aligned peak LHB latency F1,70 =4.74, p=.03, partial !2=.06, BF10=1.81, LHB 

amplitude F1,70=3.79, p=.06, partial !2=.05, BF10=1.22, Supplementary Fig. 1C). For additional LHB 
analyses, see Supplementary Results 5. Together the inferential and Bayesian statistics demonstrate that 
the CPP onset and build-up rate are robust age-related indicators.  
 
 

SUPPLEMENTARY RESULTS 5 

Stimulus-locked beta latency as a valid marker of motor preparatory activity  
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To verify that motor preparatory activity was accurately captured by our stimulus-locked measure of beta 
latency, and to exclude the possibility that EE could be impacting RT through an influence over motor 
preparatory activity, two response-locked beta metrics were derived and explored in relation to RT: 
response-locked beta slope (build-up rate) and response-locked beta amplitude (threshold; Supplementary 
Fig. 4 below). Beta slope was defined as the slope of a straight line fitted to the response- locked 
waveform, with the time window defined individually for each participant between 300 to 50 ms pre-
response, and baselined to -450 to -350ms. Beta amplitude was measured as the mean amplitude of a 
100ms window centred on a participants’ response (i.e., -50 to +50ms around response). A stepwise linear 
regression model was used to identify which of the three beta measures (peak stimulus-locked latency, 
along with slope, and amplitude at the time of response) was the best predictor of RT (Criteria: 
probability of F to enter <=.05, probability of F to remove >=.1). The resulting model of RT included 
only stimulus-locked beta latency, indicating that this was the most appropriate EEG metric for capturing 
independent variance in RT (beta latency: standardized β=.54, t=5.25, p<.001, 95% CI [.28 .62]; beta 
slope: β=.10, t=.95, p=.34, beta amplitude β=-.12, t=-1.14, p=.26 model F1,68=27.60, p<.001). In line with 
previous work (e.g.51,62, this result suggests that beta latency is a valid marker of task-relevant motor 
preparatory activity accounting for independent variance in response speed.  
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SUPPLEMENTARY TABLES  
 
Supplementary Table 1. Note all values signify mean (M) and standard deviations (SD). EEG signals that differed 
significantly between the older and younger adults (according to both Bonferroni-corrected frequentist and Bayesian 
analyses) are highlighted in bold. Note, weak (anecdotal) evidence is provided for the group difference in N2c 
amplitude 
 

 Younger Adults 
(N=31) 

Older Adults 
(N=41) 

N2c Amplitude (uV/m2) -10.03 (8.35) -15.98 (11.36) 

N2c Latency (ms) 266.16 (55.61) 285.78 (44.81) 

CPP Onset (ms) 250.84 (80.39) 345.17 (117.16) 

CPP Build-up Rate .12 (.07) .07 (.07) 

CPP Amplitude (uV/m2) 24.32 (13.75) 17.20 (11.16) 

LHB Latency (ms) 471.58 (98.18) 549.02 (178.46) 

LHB Slope -.0059 (.0057) -.0068 (.0067) 

LHB Amplitude -1.32 (1.26) -2.04 (1.73) 
 
 
 
Supplementary Table 2: Hierarchical linear regression model statistics examining how each 
neurophysiological marker contributed to RT, over and above the contributions made by those 
processes that temporally preceded. 
 

ANOVA (Dependent Variable: RT) 
Model Sum of Squares df Mean Square F Sig. 

Model 1: Predictors: (Constant), Age*RT 
1 Regression 98463.640 1 98463.640 6.242 .015b 

Residual 1088413.948 69 15774.115   

Total 1186877.588 70    
Model 2: Predictors: (Constant), Age*RT, Age 

2 Regression 614865.329 2 307432.665 36.547 .000c 
Residual 572012.259 68 8411.945   

Total 1186877.588 70    
Model 3: Predictors: (Constant), Age*RT, Age, N2c Amplitude 

3 Regression 628653.677 3 209551.226 25.151 .000d 
Residual 558223.911 67 8331.700   

Total 1186877.588 70    
Model 4. Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset 

4 Regression 628654.248 4 157163.562 18.582 .000e 
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Residual 558223.340 66 8457.929   

Total 1186877.588 70    
Model 5. Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope 

5 Regression 768362.958 5 153672.592 23.867 .000f 
Residual 418514.630 65 6438.687   
Total 1186877.588 70    

Model 6: Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope, CPP 
Amplitude 

6 Regression 825207.343 6 137534.557 24.338 .000g 
Residual 361670.245 64 5651.098   

Total 1186877.588 70    
Model 7: Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope, CPP 
Amplitude, LHB Amplitude 

7 Regression 827509.280 7 118215.611 20.724 .000h 
Residual 359368.308 63 5704.259   

Total 1186877.588 70    
Model 8: Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope, CPP 
Amplitude, LHB Amplitude, LHB Latency 
8 Regression 886238.175 8 110779.772 22.846 .000i 

Residual 300639.413 62 4849.023   

Total 1186877.588 70    

 
 
 
 
Supplementary Table 3: Bayesian linear regression model statistics examining how each 
neurophysiological marker contributed to RT. Note. BFinclusion values above 1 indicate the 
strength of evidence in favour of the alternative hypothesis and are highlighted in bold.  
 
Posterior Summaries of Coefficients  
 95% Credible Interval  

Coefficient  Mean  SD  P(incl)  P(incl|data)  BF inclusion  Lower  Upper  
Intercept   -2.429   8.337   1.000   1.000   1.000   -17.937   13.996   

Age*RT  0.013   0.004   0.500   0.992   129.391   0.005   0.019   

Age   2.273   0.451   0.500   1.000   13404.200   1.347   3.098   

CPP Build-up Rate  -759.195   179.370   0.500   0.999   1307.327   -1118.297   -439.427   

CPP Amplitude   2.168   1.041   0.500   0.927   12.640   0.000   3.752   

Beta Latency  0.221   0.074   0.500   0.981   50.810   0.074   0.391   

N2c Amplitude  -0.316   0.688   0.500   0.426   0.742   -2.303   0.492   

N2c Latency  0.011   0.108   0.500   0.354   0.549   -0.188   0.309   

CPP Onset   0.037   0.076   0.500   0.428   0.749   -0.043   0.237   

LHB Slope  791.174   1752.233   0.500   0.427   0.744   -1543.816   5360.611   

LHB Amplitude   -4.823   7.777   0.500   0.488   0.954   -22.822   3.141   
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Supplementary Table 4: Bayesian Linear Regression Model the relationship between RT and 
Cognitive Reserve. 
 
Model Comparison  

Models  P(M)  P(M|data)  BF M  BF 10  R²  
Null model   0.250   0.077   0.251   1.000   0.000   

CRI Leisure + CRI Work + CRI Education   0.250   0.380   1.837   4.917   0.266   

CRI Leisure + CRI Work   0.083   0.317   5.104   12.311   0.263   

CRI Leisure   0.083   0.110   1.358   4.269   0.154   

CRI Leisure + CRI Education   0.083   0.074   0.874   2.860   0.190   

CRI Work   0.083   0.022   0.253   0.873   0.065   

CRI Education   0.083   0.011   0.121   0.421   0.020   

CRI Work + CRI Education   0.083   0.009   0.102   0.358   0.067   
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Supplementary Table 5 Frequency and duration of leisure activity engagement for those with high and low CRI Leisure (devised by median split). 
 
 Overall 

(n = 41) 

High CR-Leisure 

(n = 20) 

Low CR-Leisure 

(n = 21) 

Significant difference 

for proportion of 

time engaged  Percentage 

of People 

Engaged 

Proportion 

of Life 

Engaged 

Percentage 

of People 

Engaged 

Proportion 

of Life 

Engaged 

Percentage 

of People 

Engaged 

Proportion 

of Life 

Engaged 

Activities with weekly frequency       
 

Reading newspapers and magazines 90.2% 

(n=37) 

82.89% 

(32.25) 

100.0% 

(n=20) 

89.28% 

(26.81) 

81.0% 

(n=17) 

75.38% 

(37.08) 

ns. 

Housework (cooking, ironing, 

washing, etc) 

97.6% 

(n=40) 

85.61% 

(32.85) 

100.0% 

(n=20) 

89.71% 

(33.06) 

95.2% 

(n=20) 

81.50% 

(32.97) 

ns. 

Driving (not biking) 95.1% 

(n=39) 

97.34% 

(14.39) 

95.0% 

(n=19) 

102.02% 

(5.84) 

95.2% 

(n=20) 

92.89% 

(18.41) 

* 

Leisure activities (sports, hunting, 

dancing, cards, bowling, etc) 

95.1% 

(n=39) 

53.58% 

(31.65) 

95.0% 

(n=19) 

64.97% 

(19.84) 

95.2% 

(n=20) 

42.76% 

(30.11) 

* 

Using new technologies (digital 
camera, computer, internet, etc) 

100.0% 
(n=41) 

72.46% 
(31.12) 

100.0% 
(n=20) 

90.53% 
(24.51) 

100.0% 
(n=21) 

55.26% 
(27.00) 

*** 

Activities with monthly frequency        

Social activities (parties/going out 
with friends, local community 
events, etc) 

87.8% 
(n=36) 

51.90% 
(38.67) 

90.0% 
(n=18) 

75.17% 
(38.25) 

85.7% 
(n=18) 

28.64% 
(21.65) 

*** 

Cinema or theatre 41.5% 

(n=17) 

48.25% 

(34.20) 

45.0% 

(n=9) 

66.79% 

(36.17) 

38.1% 

(n=8) 

27.38% 

(15.45) 

** 

Gardening, handcraft, knitting, etc 85.4% 

(n=35) 

79.81% 

(31.07) 

90.0% 

(n=18) 

78.58% 

(34.77) 

81.0% 

(n=17) 

81.11% 

(27.64) 

ns. 

Taking care of children or elderly 63.4% 

(n=26) 

24.39% 

(13.43) 

60.0% 

(n=12) 

24.87% 

(13.84) 

66.7% 

(n=14) 

23.99% 

(13.57) 

ns. 
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Volunteering 73.2% 

(n=30) 

25.39% 

(18.38) 

80.0% 

(n=16) 

26.11% 

(23.82) 

66.7% 

(n=14) 

24.57%  

(9.88) 

ns. 

Artistic activities (playing an 

instrument, painting, writing, etc) 

53.7% 

(n=22) 

52.26% 

(43.53) 

60.0% 

(n=12) 

66.41% 

(41.23) 

47.6% 

(n=10) 

39.68% 

(43.71) 

ns. 

Activities with annual frequency        

Exhibitions, concerts, conferences 82.9% 
(n=34) 

59.35% 
(35.84) 

100.0% 
(n=20) 

76.36% 
(30.60) 

66.7% 
(n=14) 

35.06% 
(28.51) 

*** 

Holidays 73.2% 

(n=30) 

49.82% 

(30.42) 

90.0% 

(n=18) 

60.91% 

(33.45) 

57.1% 

(n=12) 

33.20% 

(14.43) 

** 

Reading books 100.0% 

(n=41) 

87.69% 

(34.83) 

100.0% 

(n=20) 

99.13% 

(19.26) 

100.0% 

(n=21) 

76.81% 

(42.65) 

* 

Activities with fixed frequency        

Pet care 73.2% 

(n=30) 

53.14% 

(36.48) 

85.0% 

(n=17) 

58.91% 

(38.43) 

61.9% 

(n=13) 

45.60% 

(33.75) 

ns. 

Managing one’s bank account(s) 100.0% 

(n=41) 

94.20% 

(21.20) 

100.0% 

(n=20) 

99.65% 

(13.98) 

100.0% 

(n=21) 

89.00% 

(25.59) 

ns. 

Having children 82.9% 

(n=34) 

2.82  

(.94) 

70.0% 

(n=14) 

2.64  

(.93) 

95.2% 

(n=20) 

2.95  

(.94) 

ns. 

ns. p>.05; * p≤.05; ** p≤.01; *** p≤.001, only these values pass the Bonferroni threshold for significance. 
Note. All values represent M(SD). Values reported for having children are the percentage of people who reported having children, and the mean number of 
children, respectively. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.28.466233doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Supplementary Table 6. 
      BF₀₁  error %  
 RT 120 trials  RT 100 trials  26.185   0.004   

   RT 80 trials  22.506   0.003   

   RT 60 trials    7.360   0.001   

   RT 40 trials  26.381   0.004   

   RT 20 trials  28.076   0.004   

 CPP 120 trials  CPP 100 trials   6.434  9.348e -4   

   CPP 80 trials   24.552  0.004   

   CPP 60 trials   10.909  0.002   

   CPP 40 trials   25.467  0.004   

   CPP 20 trials     15.542  0.002   

Bayesian paired-sample t-tests comparing 120 trials with reduced bin sizes for both RT 
and CPP slope (build-up rate).  
 
 
 
Supplementary Table 7. 

 120 vs 100 100 vs 80 80 vs 60 60 vs 40  40 vs 20 

Cumulative Distribution Factor (ks) 

RT (k, p) k=.22*** k =.03 ns k=.09*** k=.05 ns k=.14*** 
CPP slope k=.25*** k=.01 ns k=.09*** k=.07** k=.1*** 

Note. ks denotes Kolmogorov-Smirnov test, ***, p<.001, **, p<.01 
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Supplementary Figure 1. Temporal 
Dynamics of Evidence Accumulation 
Are Robust Age-Related Indicators 

A. The stimulus-aligned N2c waveform (electrodes 

P7/P8) for older and younger adults. B. Stimulus-

aligned CPP waveform (electrode Pz) for the two 

groups. C. Stimulus-aligned beta waveform 

(electrode C3) for the two groups. Note. The 

topoplots depict the spatial distribution of the 

EEG signal for both groups combined at 150-

400ms post-target for the N2c (A) -150ms to 50ms 

aligned to response for the CPP (B) and 400-

700ms post-target for LHB (C).   
 
 
 
 
 
 
 
 
 
 
 
 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.28.466233doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

 
 
 
Supplementary Figure 2. The N2c component, stimulus aligned at electrode P7 (Left 
Hemisphere), and P8 (Right hemisphere).  
Given the relevance of hemisphere lateralisation for theories of cognitive ageing, we investigated any age-related hemisphere 

differences in the N2c using 2 (old versus young) X 2 (right hemisphere x left hemisphere) ANOVAs, separately for latency and 

amplitude . There was no main effect of hemisphere on N2c latency (F1,69=3.46, p=.07) but there was a significant hemisphere x 

group interaction term (F1,69=11.56, p=.001, partial !2 =.14). In line with a large body of work highlighting a right hemisphere 

dominance for early sensory processing, follow up analyses revealed that the younger adults showed a significantly faster right 

hemisphere N2c latency (M=257.07ms, SD=51.67) as compared with the left hemisphere (298.77ms, 69.95; F1,29=14.99, p=.001, 

partial !2 =.34). In contrast, for the older adults there was no hemispheric differences in N2c latency (F1,40=1.23, p=.28; right 

hemisphere: M=303.59, SD=57.56; left hemisphere: M=291.37ms, SD=54.86), possibly indicative of a reduction in hemispheric 

asymmetries in the older adults. As compared with the younger adults, the older adults showed slower N2c latencies in the right 

(F1,69=12.32, p=.001, partial !2 =.15) but not left (F1,69=.25, p=.62) hemispheres. There was no effect of group on N2c amplitude 

(F1,69=3.33, p=.07), nor was there any group x hemisphere interaction term (F1,69=.02, p=.88).  
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Supplementary Figure 3. Differences between the activities of those with relatively higher versus 
lower levels of lifetime leisure engagement 
Proportion of life spent engaging in particular activities varies between those with an overall higher or lower level of engagement 

in leisure activities. Significant group differences are presented in bold. * denotes comparisons where p<.05, but did not satisfy a 

Bonferroni adjusted α=.003. 

 

 
Supplementary Figure 4. CPP and Beta components from Figure 1 visualised here aligned to 
participants’ response.  
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