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A B S T R A C T

Even in response to simple tasks such as hand movement, human brain activity shows remarkable inter-subject
variability. Recently, it has been shown that individual spatial variability in fMRI task responses can be pre-
dicted from measurements collected at rest; suggesting that the spatial variability is a stable feature, inherent to
the individual’s brain. However, it is not clear if this is also true for individual variability in the spatio-spectral
content of oscillatory brain activity. Here, we show using MEG (N ¼ 89) that we can predict the spatial and
spectral content of an individual’s task response using features estimated from the individual’s resting MEG data.
This works by learning when transient spectral ‘bursts’ or events in the resting state tend to reoccur in the task
responses. We applied our method to motor, working memory and language comprehension tasks. All task
conditions were predicted significantly above chance. Finally, we found a systematic relationship between genetic
similarity (e.g. unrelated subjects vs. twins) and predictability. Our approach can predict individual differences in
brain activity and suggests a link between transient spectral events in task and rest that can be captured at the
level of individuals.
1. Introduction

Human non-invasive neuroimaging data is characterized by high
inter-subject variability. Even for simple tasks such as moving a hand or
seeing a well-defined visual pattern, the specific responses elicited in
different subjects can be heterogeneous in terms of spatial location or
extent, as well as magnitude, timing and oscillatory content. The origin of
this variability is not clear, but there is increasing evidence that it reflects
intrinsic, inter-individual differences in resting-state activity. Support for
this hypothesis has been demonstrated recently using human functional
magnetic resonance imaging (fMRI) data, where it was shown that task
responses can be predicted from rest (Tavor et al., 2016). Specifically,
spatial activation maps for a number of different tasks (motor, sensory,
working memory) were reliably predicted from connectivity profiles
derived from resting state data.

However, fMRI represents a rather indirect measure of brain activity.
By contrast, magnetoencephalography (MEG) or electroencephalography
(EEG) can capture the oscillatory and synchronized activity of neuronal
populations and - unlike fMRI - can resolve brain activity at a temporal
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resolution down to milliseconds, reaching the temporal scale at which
important aspects of cognition, and the neural dynamics that are tied to
these processes, arise. Thus, the question arises as to whether features of
M/EEG task responses can be predicted from resting M/EEG.

There is already a large body of work focusing on the link between
rest and task processing in M/EEG. Features of the most prominent
rhythms, such as alpha or beta oscillations, in human resting state M/EEG
data are known to be functionally relevant and have considerable cross-
subject variability (Klimesch, 1999). As in fMRI, the M/EEG literature
has already demonstrated both the variability of transient electrophysi-
ological features at rest, during task-processing and their functional
relevance. For example, resting state features in EEG have been shown to
impact on task responses (Becker et al., 2008; Mazaheri and Jensen,
2008; Nikulin et al., 2007), relate to perceptual and cognitive perfor-
mance (Busch et al., 2009; Mathewson et al., 2009). On the other hand,
ongoing activity in the alpha or beta frequency range is also highly
variable during task processing and shows functional relevance during
working memory tasks (Klimesch, 1997), observation of movements
(Pineda et al., 2005) as well during effortful speech comprehension
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(Becker et al., 2013; Obleser andWeisz, 2012). The link between ongoing
and task activity has been demonstrated both intra-individually (i.e. on a
trial-by-trial level) and inter-individually (i.e. on a subject-by-subject
level), and such links seems to exist beyond specific sensory and cogni-
tive domains and have also been demonstrated invasively in animal brain
activity (e.g. Arieli et al., 1996). While all these studies provide evidence
of a link between rest and task activity in neuronal activity, a more direct
link – i.e. predicting individual task responses from individual
resting-state neuronal activity - is still missing for M/EEG.

In this study, we aimed to predict cross-subject variability of task
MEG time-frequency responses using spatio-spectral dynamics as derived
from resting MEG data. Recently it has been shown that task responses in
M/EEG can be well represented using transient spectral events ‘bursting’
at fast time scales (van Ede et al., 2018; Shin et al., 2017; Vidaurre et al.,
2016; Zich et al., 2018). We therefore hypothesised that subject-specific
transient spectral events in resting-state neural activity might be pre-
dictive of subject-specific trial-averaged task responses, in a wide range
of experimental conditions. To identify the characteristics of the transient
spectral events, we used the approach of Hidden-Markov-Modeling
(HMM). Hidden-Markov-Modeling is able to identify “states” in noisy
neuroimaging data that get systematically revisited over time. HMMs
with autoregressive observational models have previously been shown to
be able to extract states that have distinct spectral content, in both rest
and task MEG data (Vidaurre et al., 2016, Vidaurre et al., 2018b, 2018a;
Zich et al., 2018; Quinn et al., 2018). Visits to the different states can be
thought of as transient events with distinct spectral profiles. The time
courses of these spectral events, or states, provides a high temporal res-
olution description of the dynamics of oscillatory activity; e.g. ongoing
alpha and beta rhythms, or, in the case of task data, event-related com-
ponents such as evoked or induced task responses.

Using HMMs with a focus on spectral patterns we sought to predict
between-subject variability in the time-frequency responses in a parcel-
lated whole-brain MEG data set involving a number of different tasks
using resting state data, i.e. the aim is prediction in spatial, spectral and
temporal dimensions. For this we use data from the Human Connectome
Project (HCP), a consortium of several research institutes that has
collected data of a relatively large number of MEG subjects and in-
corporates both resting state data and a range of task data, including
motor movements, and cognitive tasks involving working-memory and
language comprehension (Van Essen et al., 2013).

2. Methods

2.1. Subjects and data

The data used here are the resting state and task magnetoencepha-
lography (MEG) data publicly available from the Human Connectome
Project (HCP) consortium (Van Essen et al., 2013; Larson-Prior et al.,
2013), acquired on a Magnes 3600 MEG (4D NeuroImaging, San Diego,
USA) with 248 magnetometers. The resting state data consist of 89
subjects (mean 28.7 years, range 22–35, 41 f/48 m, acquired in 3 sub-
sequent sessions, lasting 6 min each). Task data were available for a
subset of these subjects, with 2 sessions per task. The tasks acquired in
the MEG include a motor task condition - where hands or feet had to be
moved paced by an external cue (every 1.2s), a working memory (WM)
task - where people had to remember the occurrence a of n-back previ-
ously shown item (with n ¼ 0 and 2) with the items being either tools or
faces and finally, a third task group - involving language comprehension -
where in one condition, subjects had to listen to a number of sentences
(making up a complete story) and then answer questions regarding that
story, and in another condition subjects had to solve math problems
(Larson-Prior et al., 2013). Data were segmented to the onset of EMG
(motor task), the non-target item (WM task), or to the onset of a sentence
(language task). For each of the task groups, overlapping but not identical
subsets of the total pool of resting state subjects was available (motor task
n ¼ 56, WM task n ¼ 70, language comprehension n ¼ 72).
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We analysed 10 different task conditions in total across these 3 main
task groups – 4 for the motor task (right hand, left hand, right foot, left
foot), 4 for the WM task (0-back face items, 0-back tool items, 2-back face
items, 2-back tool items, all being part of the non-target condition which
also required a motor response), and 2 task conditions within the lan-
guage condition - sentences vs. math problems.
2.2. Preprocessing

2.2.1. Source estimation and parcellation
For each subject, the MEG data were acquired in a single continuous

run comprising both rest and task. We used the MEG data from the HCP
database denominated as ‘preprocessed’ as starting point (i.e. with
removal of artefactual independent components, bad samples and
channels already performed, see Larson-Prior et al., 2013). Then, data
were subject to bandpass filtering (1–48Hz, Butterworth) and LCMV
beamforming (using beamforming routines from the Matlab based
Fieldtrip toolbox (Oostenveld et al., 2011) and the in-house OHBA
Software Library (OSL), (Woolrich, M. et al., 2011), resulting in 5798
virtual source voxels (with 8 mm grid resolution) and down-sampled to
200 Hz. In order to reduce dimensionality of the analysed data, we used a
custom parcellation of 76 parcels covering the whole brain, extracting
the first principal component (PC) across all time-courses within each
parcel. The parcellation was created in such a way that each first PC
explained about 60% of the variance across all voxels within each parcel
by starting with 2 large parcels covering each hemisphere and then
subsequently splitting these parcels into smaller ones). The parcellation
was based – analogous to all other preprocessing steps – on the resting
state data only.

Note that all resting state runs for a subject were acquired in a single
session. As a result, we concatenated the resting state runs for a subject,
and applied a single beamformer, parcel time-course extraction and
spatial leakage reduction. Then, the transformations (learnt only from
the rest data for a subject) are applied to the task data runs for any
subjects we are looking to predict. This ensures maximum consistency of
within-subject pre-processing for all sessions, without having knowledge
of, or being biased by, any task data information from the same subject.

To reduce spatial leakage, we used the multi-variate orthogonalisa-
tion approach on the parcel time-courses, as described in (Colclough
et al., 2015), using the ‘closest’ implementation.

2.2.2. Task data epoching
For the motor task, data were time-locked to the onset of the elec-

tromyogram (EMG), for the WM task, epochs were locked to the visual
onset of the (non-target) item and for the language comprehension task
the beginning of the sentence or maths problem was the time-locking
event. To ensure consistency of the concatenated data sets, both resting
state data and task data were normalized to zero mean and unit variance
(performed per subject and parcel). Motor task epochs were segmented
from �1.1 to 1.1secs, working memory task data and language task data
from �1.1 to 2.2 s. Baseline correction was performed from �0.5 to
�0.2s.
2.3. Conventional estimate of time-frequency task responses

We performed conventional wavelet (WL) time-frequency analysis (7
cycles, Morlet mother wavelet) for the segmented task data, serving as a
comparison with the HMM-based (regularised) task responses at the
group level (described later). The WL based task responses were baseline
corrected in a pre-stimulus time window (�0.5s to �0.2s for all task
conditions). If not specified otherwise, general custom Matlab scripts
were used (Matlab R2016b, Natick, USA) and the in-house OHBA Soft-
ware Library (OSL), which is built on Fieldtrip and SPM, available at htt
ps://github.com/OHBA-analysis/osl-core).

https://github.com/OHBA-analysis/osl-core
https://github.com/OHBA-analysis/osl-core
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2.4. Prediction of subject-specific time-frequency task responses using
resting data

In order to predict task responses - in space, time and frequency - from
resting state features, we hypothesised that subject-specific transient
spectral events, or bursts, found in resting-state neural activity might be
predictive of subject-specific trial-averaged task responses. To identify
spectral events we used the approach of Hidden-Markov-Modeling
(HMM), which has previously been shown to be able to identify spec-
tral events independently in task and rest MEG data (Baker et al., 2014;
Quinn et al., 2018; Vidaurre et al., 2018b, 2016).

Specifically, we used the HMM with an Auto-Regressive observation
model (HMM-AR) to learn the subject-specific spectral content of these
transient events in resting MEG data. This was then combined with a
group averaged description of when these transient events tend to re-
occur in the task response, to produce subject-specific predictions of
the task response. We carried out this approach one parcel at a time,
using the pipeline outlined in Fig. 1., summarised by the following steps:

1) Training:
a. We used the HMM to identify transient spectral events in the rest

data (done separately for each parcel, all parcel time-series
concatenated over subjects). Note that each HMM state corre-
sponds to a spectral event of a certain type. These resting-MEG
HMM states, or transient spectral event types, are characterised
by both when they occur (i.e. the state time courses) and their
group-averaged or subject-specific spectra. We refer to these
spectra as RHS spectra (which is short-hand for Resting-MEG-
derived HMM State (RHS) spectra). Subject-specific, individual
RHS spectra are obtained by spectral analysis of the RHS time-
courses in the subject-partitioned resting data.

b. We then estimate the state time courses of when those resting-MEG
states, or transient spectral event types, tend to re-occur in the task
data. The resulting time courses were then averaged over trials to
compute an evoked response for each state. We refer to these as
RHS task responses.
Fig. 1. An overview of the approach, shown for one task condition and one parcel. a-c
derived HMM states (RHS) are identified on the entire group concatenated resting sta
state corresponds to a spectral event or burst of a certain type. (b). The epoched task d
identify when the RHS tend to reoccur in the task response, resulting in group-averag
(LO) subject. (d) The LO subject’s resting state activity is projected onto the group R
data, yielding LO-subject RHS time courses and based on the subject-specific state-t
Finally, the group-averaged RHS task responses, from panel (c), and the LO subject-s
subject-specific prediction of the time-frequency task response (f). This is a summary o
study is depicted and described in Supplementary Fig. 1.
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2) Prediction: Finally, we predicted the task response of a left-out (LO)
subject. We did this by combining the subject-specific RHS spectra for
the LO subject (this only uses the rest data for that subject) with the
group-averaged RHS task responses (where we have excluded the
RHS task response for the LO subject).

This pipeline is specified in more detail in Supplementary Fig. 1 and
in Supplementary Methods (section 1., “HMM framework: training,
spectral estimation, extraction and prediction of task responses”).
2.5. Validation of prediction

In the validation step, we assessed the quality of the predictions by
comparing the LO subject’s time-frequency predicted task response
(PTR) (from Supplementary Fig. 1F) to their actual task response (ATR).
The HMM-AR limits the dimensionality of the PTR (because the autore-
gressive observation model used by the HMM has only 5 parameters, and
because there are only 4 HMM states) so it is by design a regularised
estimate of the ATR. To ensure that we are comparing like-with-like, we
applied this regularisation to both the PTR and ATR, i.e. we stay within
the HMM framework to estimate both the PTRs and ATRs.

To assess the quality of the prediction, linear correlation analysis was
used to compare the predicted (PTRs) and actual task response (ATRs) of
all subjects. Baseline-corrected PTRs (i.e. 2D time-frequency maps), that
is, the full time-frequency task response matrices [with the available peri-
stimulus time ranges of �1.1 to 1.1s for the motor task, �1.1 to 2.2s for
the working memory and language task and the full frequency range of
1–48 Hz] were vectorized and concatenated over all parcels for each
subject. That is, all information pertaining to the task responses enters
this validation analysis in the shape of one long vector per subject (and
task). The reason for using baseline corrected task responses (instead of
looking at absolute power changes) is that this represents a stricter and
more conservative test of prediction. Without baseline-correction, the
spectral average state (i.e. the task spectrum) enters the correlation and
distorts, that is, it overestimates results, while attenuating the sensitivity
to how well task dynamics are captured. Then these concatenated PTRs
were correlated with the ATRs of all subjects (including its own ATR). In
. Training stage. (a) By using Hidden-Markov-Modelling (HMM), Resting-MEG-
te time-series, resulting in the group-averaged RHS spectra. Note that each HMM
ata for all subjects and trials is projected onto the group-averaged RHS spectra, to
ed RHS task responses. (c). d-f. Prediction of the task-response for the left-out
HS spectra to identify when the group RHS tend to occur in the LO subject’s rest
ime courses, the refined, individual RHS spectra specific to the LO-subject (e).
pecific, i.e. individual, RHS spectra, from panel (e), are combined to create a LO
f our approach; a more detailed schematic, specific to the use of HMM-AR in this
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case of a good prediction, the individual predicted task response should
be more similar to the actual task response of the same subject than to the
actual task responses of any other subject. After performing this corre-
lation, correlation coefficients were normalized (demeaned, with unit
variance) over rows and columns, since we were not interested in the
mean or different variances of actual vs predicted task responses in
different rows and columns (analogue to Tavor et al., 2016). This
normalization is performed to enhance sensitivity of estimating the
relative predictability of one subject vs another rather than absolute pre-
dictability. As an illustration, one subject which shows a very typical
average response will likely be predicted better on average than another.
The normalization removes such absolute baseline differences, both in
rows and columns and emphasizes how well a subject is predicted in
relative terms. In order to determine the statistical significance of this
effect, a two-sample t-test was performed, to test whether diagonal and
off-diagonal samples come from the same distribution.

A detailed description of the approach for generating the actual task
responses (ATR) within the HMM framework and the visualisation and
comparison to conventional task responses can be found in the Supple-
mentary Material (Supplementary Methods section 2., “Characterisation
of identified HMM states: spectral features and their modulation in task
conditions” and Supplementary Fig. 2).
2.6. Sources of variability of prediction performance across tasks and
subjects

Next, we examined whether there is any systematic variation in how
well we can predict different tasks and different subjects. Specifically, we
investigated the relationship between prediction performance and a
measure of the ‘stability’ of each subject’s first-level task. Prediction
performance was quantified using the average diagonal value of the
correlation matrix (see Fig. 4 later), and the task stability was quantified
(within subjects) using the resulting t-value over all trials for a time
window of interest from 0.1s to 0.5s post-stimulus, frequency range from
8 to 26 Hz (testing the difference from zero), and for a representative
parcel-of-interest for each task, as shown in Fig. 3. For the motor task, we
chose a parcel corresponding to the contra-lateral motor area, for the
working memory task we chose a parcel in proximity to visual cortex, and
for the language task we chose a parcel near the auditory cortex. These
measures were computed for every task and subject.
2.7. Influence of genetic factors on prediction of task responses

The MEG HCP data contains a roughly equal mix of monozygotic
(MZ), dizygotic (DZ) and unrelated (UNREL) subjects. It has been pre-
viously shown that the functional connectomes of more related siblings
are more similar in MEG and fMRI (Colclough et al., 2017; Vidaurre et al.,
2018b, 2018a). Here, we wanted to examine whether there is also any
systematic structure in cross-subject predictions, i.e. whether the ability
to predict one subject’s task response from another subject’s resting state
features is governed by genetic similarity (for example from one twin to
another etc.). To do so, after grouping the subjects into groups MZ, DZ
and UNREL, for all tasks at hand (n¼ 10) we accumulated the previously
computed and normalized correlation coefficients for predicted vs. actual
task responses for each pool of subjects (see “Validation of prediction
approach” for the normalization approach).

In order to test whether the difference between cross-subject pre-
dictability is systematic, we performed permutation tests for the
following groups: MZ vs DZ, DZ vs UNREL, with another reference group,
SAME, testing for how well we could predict from the actual subject (see
“Validation of prediction approach”). For each grouping, labels of the
two conditions were shuffled 1000 times and we compared the actual
group mean difference against the distribution of differences from the
permutation distribution.
4

3. Results

3.1. Between-subject variability in task and rest

We start by illustrating the nature of subject variability apparent in
task and rest data, and the potential relationship between them. This is
shown in Fig. 2, for the example of the right-hand movement task, locked
to the EMG onset. Fig. 2A shows the group-averaged resting state spectra;
and Fig. 2D shows a prominent, typical task-induced beta event-related
desynchronisation (ERD). Next, we looked to see if there were any in-
dications of subject-specific relationships between the spectral properties
of the trial-averaged task beta ERD and the spectra in the resting state
data.

First, we looked at the amplitude of the beta ERD, by plotting in the
second column of Fig. 2 the power spectra in rest and task (calculated
during the ERD) over subjects, with the subjects ordered by their task
beta ERD amplitude. Second, we looked at the peak-frequency of the
beta ERD, by plotting in the third column of Fig. 2 the same power spectra
in rest and task over subjects, but now with the subjects ordered by their
task beta ERD peak-frequency.

This illustrates two points. First, the subject-specific trial-averaged
task and rest spectra show a considerable amount of between-subject
variability, in terms of both the amplitude and shape of the spectral
profiles. Second, there appears to be a qualitative relationship between
the task and rest spectral profiles of individual subjects. Most notably, the
task beta ERD peak-frequency ordering reveals a similar trend over the
subjects between task (Fig. 2F) and rest (Fig. 2C). For example, subjects
that have a high task beta ERD peak-frequency, also tend to have a higher
amount of power in high beta than low beta in the rest data. It is these
types of relationships that our approach leverages to allow the prediction
of trial-averaged task spectral responses from rest data.

3.2. Data: group level task responses

Before proceeding to subject-specific task-response prediction, we
examined the distinct group-averaged task responses for the different
tasks that we will be predicting. The group-averaged conventional
wavelet (WL) based task responses for the three main conditions in these
tasks – a motor task, visual working memory and a language compre-
hension task - are shown in Fig. 3.

The motor task (Fig. 3A) shows the typical movement-related alpha
and beta ERD in a contralateral motor-cortex associated parcel
(approximate parcel location is indicated by red dots on the rendered
brains) and a typical motor-evoked response, i.e. a power increase in the
lower frequency range (especially in the contralateral motor areas). The
group task response for the visual working memory task (Fig. 3B) shows
both the typical visual alpha ERD following a visual stimulus (which
occurs during this task) and the motor preparation component reflected
by ERD in the beta band contralateral to the required button press
(needed to respond to matches/non-matches). Both the motor compo-
nent as well as the visual component show power increases in the lower
frequency range reflecting the evoked responses usually associated with
such a task. The language comprehension task (Fig. 3C) shows alpha ERD
in a parcel encompassing auditory cortex and higher auditory areas, as
well as typical language-related theta power increase. Both are sustained
for the duration of the sentence presentation (exceeding beyond the
shown time window).

These average task responses illustrate that while the tasks share
some common spectral features, such as alpha or beta ERD, they vary in
their exact spectral profile, temporal dynamics and spatial patterns.

Before any prediction can take place, one important question is
whether the HMM-AR is a viable choice for extracting critical features
from rest that might constitute the task response features that we want to
predict. To get a qualitative answer to that question, we used the HMM-
AR on the task data, however with the observation model held fixed. This
basically corresponds to describing the task data using spectral events



Fig. 2. Illustration of the subject variability in task and rest spectral content, and the potential relationships between them. As an example, we use the right-hand
movement task, locked to EMG onset, and resting state data from the same motor-area parcel. A. Group-averaged power spectrum of resting data from a parcel in
the left motor cortex (data was high-pass filtered above 1Hz). B, C. Resting state spectra (frequency on x-axis) of individual subjects (on y-axis) ordered by task features
in E and F (i.e. beta amplitude and beta frequency). D. Time-frequency amplitude response in the task condition, showing a beta-band event-related desynchronisation
(ERD) (red square), red-lined window is used for sorting in E and F. E. Task power spectra during the ERD for each subject, ordered by their beta ERD amplitude
(extracted from the average over the red time-frequency window in D). Note that the task power spectra in E and F were computed by averaging over the ERD time-
period, i.e. within the time-window indicated by the dashed red-lines in D. This ordering index was used in B. F. Same power spectra as E, but now with subjects
ordered by their beta ERD peak-frequency (found within the time-window indicated by the dashed red-lines in D) - this subject ordering index is used for the resting
state data in C.
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that had been identified at rest only. The results can be seen in Supple-
mentary Fig. 2, for all groups of task responses we examined – motor,
working memory and language task responses. In general, the features
extracted at rest are able to describe the main features in the group-
average task data, task-related increases in power usually reflecting
evoked responses as well as task-related decrease in mostly alpha or beta
power reflecting typical event-related desynchronizations (ERD).
3.3. Prediction of subject-specific task responses

We next examined if we could predict the spatial and spectral content
of an individual’s task response using features estimated from the in-
dividual’s resting state data. Specifically, we hypothesised that transient
spectral ‘bursts’ or events in the resting state would predict transient
spectral events in the task responses.

To do the subject-specific task-response prediction we applied the
pipeline outlined in Fig. 1, where we obtained the predicted task re-
sponses for all task conditions, parcels and subjects. In Fig. 4, the vali-
dation results for each of the 3main types of tasks (motor, WM, language)
are shown (illustrated for the same tasks as in Fig. 3 and Supplementary
Fig. 2). Fig. 4A shows the correlationmatrix that reflects how strongly the
actual task responses correlate with the predictions, either from the same
subject (indicated by values in the diagonal) or from other subjects
(indicated by values in the off-diagonal part of the matrix). A good pre-
diction should result in the diagonal (prediction of same subjects)
prominently standing out. Fig. 4A shows the ‘raw’ correlation coefficients
for this validation step, while Fig. 4B shows the same correlation matrix
after normalization (of row and columns, respectively). In order to sta-
tistically test the difference between same-subject prediction vs random-
subject prediction, we tested the null hypothesis that both these groups
(same vs other, i.e. in-vs off-diagonal) come from the same distribution
(using a two-sample Student’s t-test). This was rejected for all task con-
ditions, as all p-values were less than 1.86 x 10�5 (for the math problem
solving task). Thus, predictions for all tasks are better when using resting
5

state data (specifically their spectral profiles of the different types of
spectral events, or states, as identified by HMM-AR in rest data) from the
same subjects as compared to random subjects (defining our ‘chance
level’ in the present case).

We next sought to characterise the nature of the between-subject
variability that we are able to predict with our approach. Supplemen-
tary Fig. 3 shows three example subjects, illustrating the between-subject
variability that is being predicted in two ways in the right-hand motor
task. First, we show the average predicted power in a post-stimulus time-
window (190–390 ms) in the beta band. Second, we show the predicted
task-related time-frequency (or spectro-temporal) variability in a motor
parcel contralateral to movement. In summary, this illustrates how the
predictions are reflecting both spectro-temporal and spatial aspects of
between-subject task variability.
3.4. Prediction quality across tasks

Another question that is important to address is the variability of
prediction performance, i.e. how well we predict subject specific task
responses from rest, in the tasks examined and what is the source of it.
While all task conditions yield predictions that are significantly better
than chance, the quality of the predictions varies to some extent. We
hypothesised that one potential source underlying the variability in
prediction quality might be the (cross-subject) task-specific variability of
signal-to-noise ratios (SNR). The result is visualised in Supplementary
Fig. 3. SNR of task responses was defined by the subject’s first-level
statistics (i.e. t-values indicating the within-subject level of significance
of the observed task responses). For each task - both on a group averaged
as well as on the individual subject level - stronger and more stable re-
sponses (as indicated by t-values, plotted on the x-axis) imply better
prediction (i.e higher normalized correlation coefficients, on the y-axis).
In general, the motor task conditions (right/left hand and feet) are pre-
dicted best, followed by the working memory conditions, and finally, the
language comprehension task conditions (sentence comprehension, math



Fig. 3. Group-level summary of the different task responses used in this study. A. Motor task (a right-hand movement, time-locked to the movement onset). B. Visual
working memory task (2-back, faces, time-locked to appearance of the non-target items). C. Language comprehension task (time-locked to beginning of a sentence). On
the left of each panel, is the wavelet-based time-frequency maps locked to task onset (shown separately for the left and right hemisphere), for the parcels indicated by
the red dots on the rendered brains on the right of each panel. The red line in the time-frequency plots indicates the time-point show in the rendered brains on the right
side, which are shown for three different frequency ranges, corresponding to sub-alpha (<7 Hz, including theta and delta range), alpha, and beta.
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problem solving). A similar analysis where we examined another po-
tential source of prediction performance variability - effect size, i.e.
subject-specific average amount of alpha or beta ERD rather than subject-
specific SNR (as done above) - yields no such relationship (results not
shown).

3.5. HMM predicted task responses show hereditary structure

We asked how the genetic structure, a feature available in the
present HCP data set, is related to predictability (Fig. 5). We
hypothesised that task responses might be better predicted from
resting state data of genetically more closely related subjects (e.g.
identical or non-identical twins) than from resting state of completely
unrelated subjects.

Non-parametric analysis of variance revealed that the normalized
correlation coefficients (i.e. the similarity between prediction and actual
task responses, see Methods) pooled into groups; reflecting that same
subjects (SAME), identical twins (MZ), non-identical twins (DZ) and the
remainder (UNREL) are not originating from the same distribution (as
determined by permutation testing). Non-parametric (rank-based) post-
hoc testing between the groups showed that all differences in prediction
performance between groups were significant (pSAME_vs_MZ, pMZ_vs_UNREL,
pDZ_vs_UNREL all < 0.001, cf. Fig. 5). Generally, correlation coefficients
are higher (i.e. predictions are better) the more genetically similar
subjects are, in terms of the ability for the resting state data from one
subject to be able to predict another subject’s task response.
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4. Discussion

4.1. Summary and interpretation of results

We have shown that subject-specific trial-averaged task responses can
be predicted in task MEG using subject-specific transient spectral events,
or bursts, identified in resting-state MEG data. We have shown that this
prediction is made without prior knowledge of the task responses of
specific subjects and is mediated by hereditary factors. This has been
demonstrated using the HCP MEG data; a large, freely available data set
with a set of diverse experimental conditions ranging from simple hand
movements to more cognitively demanding tasks involving working
memory, attention and language processing.

To identify transient spectral events, or bursts, we used the HMM. In
this approach, each HMM state corresponds to a spectral event or burst of
a certain type. The HMM has been previously used to identify transient
events in both rest and task data in MEG (Baker et al., 2014; Quinn et al.,
2018; Vidaurre et al., 2018b, 2016), fMRI (Vidaurre et al., 2017) and
simultaneous EEG-fMRI (Hunyadi et al., 2019). Here we used a
region-by-region HMM-AR to identify transient spectral events defined as
having distinct spectral profiles, in order to link rest and task with the
following findings.

First, the spectral properties of the different transient spectral events
represented by the HMM states purely extracted from rest were shown to
be relevant and effective in describing task dynamics at the group-
averaged level. Subsequently, subject-specific spectral profiles of



Fig. 4. Group level statistics for the prediction of subject-specific task responses (here one task condition is shown for each group of tasks – motor, working memory
and language comprehension - showing the level of correspondence between actual task responses and their predictions. A-C. These matrices show the correlation
coefficients between actual and predicted task responses of either the same subjects (in the diagonal) or of different subjects (in the off-diagonal). Results are shown for
a motor task (right hand movement, A), working memory task (2-back, face stimuli, B) and language comprehension task (sentence understanding, C), respectively. D-
F. Same task conditions, now with the correlation coefficients normalized over rows and columns (see Methods). G-I. Predicted task-responses and actual (HMM-
regularised) task responses from the same subjects are more similar to each other than pairs of task response and predictions from different subjects (distribution is
visualised by the red lined plot). The asterisks represent the values in the diagonal from D-F, the blue vertical line the mean and the red line distribution represents the
distribution of the off-diagonal values from D-F. All task conditions were predicted above chance level.
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transient spectral events identified by HMM-ARwere then used to predict
trial-averaged task dynamics on a single-subject level (Fig. 1, Supple-
mentary Fig. 1). We found that the accuracy of the presented approach
typically depends on two factors: The accuracy of the individual spectral
profiles of the spectral events as extracted by HMM-AR, and the accuracy
of the predicted state dynamics, i.e. the state time-courses or rate of
occurrence of the spectral events represented by each state, for the states
associated with these spectral profiles. Both these properties critically
affect the prediction accuracy, since these two features ultimately
generate the predicted (‘HMM-regularised’) time-frequency task re-
sponses in our model.

With respect to the different task conditions, we saw that task
response predictions worked best in task conditions with strong and
robust event-related task responses both at the subject and group level
(Supplementary Fig. 4). This relationship is likely to come from two
different sources. First, a robust task response means that during the
training step in our framework, the actual task dynamics, i.e. the state
time courses of the hidden states (which serve as a model for the left-out
subject) are better estimated when task responses are robust (i.e. less
7

noisy and more genuinely subject-specific); this is true for both subject
and group level estimations. Second, a robust response also means that
ERD behaviour is better estimated in terms of its precise spectral prop-
erties (i.e. its peak frequency).
4.2. Previous work and related approaches

The results in this work may be relevant for the incipient debate on
the interpretation of frequency-specific patterns of neural activity. The
success of using the HMM to identify transient spectral events in order to
link rest and task implies that transient spectral events, or bursts, are a
useful description of brain activity in electrophysiological data. It re-
mains to be seen, but it is possible that a hybrid description of bursts and
sustained rhythms could be even more powerful (Shin et al., 2017; van
Ede et al., 2018). However, a complete comparative analysis with
non-bursting representations of spectral activity is required to fully
support this idea.

In a broader sense, the present study is part of a body of work that
tries to link rest to task features, or, more generally, structure to function.



Fig. 5. Genetic factors play a role in cross-subject predictions, with subjects
being better predicted by their genetically closer counterparts than by unrelated
subjects. As expected, when pooling over all same-subjects (‘SAME’), the
normalized correlation coefficients are highest (corresponding to the distribu-
tion of all pooled diagonal entries from correlation matrices in Fig. 4). The
second-best prediction across subjects is obtained when predicting task re-
sponses from one monozygotic twin’s rest data to its sibling (labeled ‘MZ’,
sharing 100% of their genetic information). For dizygotic twins (labeled ‘DZ’,
50% of shared genetic information) predictions are slightly worse (not signifi-
cant compared to MZ), however they are still significantly better than when
predicting task responses of random subjects (‘UNREL’, i.e. unrelated subjects
with no shared genetic information). Stars indicate level of significance (***p <

0.005, results of permutation testing (with 1000 permutations), following
Bonferroni correction for multiple comparisons), light green boxes indicate
the median.

R. Becker et al. NeuroImage 215 (2020) 116818
Previous approaches have shown links between resting state connectivity
patterns and task activations (Biswal, Yetkin, Haughton and Hyde, 1995;
Cole et al., 2016; Tavor et al., 2016), connectivity and subjects or
behavioral measures (Shen et al., 2017a,b; Smith et al., 2015), anatom-
ically related structural features such as grey matter volume linked to
behavioral skills such as navigation (Maguire et al., 2000) as well as links
between structure and spatio-spectral content (Abeysuriya et al., 2018;
Hadida, Sotiropoulos, Abeysuriya, Woolrich and Jbabdi, 2018). All of
these findings point to the functional relevance of inter-subject variance –
variance that is necessarily eliminated by conventional approaches such
as averaging (Seghier and Price, 2018). This approach builds upon the
previous work to show the relevance of this variability in the
time-frequency domain by both representing inter-subject variance and
showing its link with the resting state.

The evidence that there is a hereditary component (Fig. 5) - meaning
that prediction from resting state data of genetically related subjects
yields better task predictions than predicting from unrelated subjects -
adds weight to this finding. It supports the idea that these inter-subject
differences are not trivial, but biologically meaningful, since related
subjects show related MEG patterns. Previous reports already indicated
that inter-subject variability, specifically of functional connectivity in
resting state (Colclough et al., 2017) as well as spontaneous HMM state
(and meta-state) dynamics (Vidaurre et al., 2018b, 2018a) have a strong
genetic component, and the finding of genetic influence in the present
results is another hint at the relevance of genetic factors for subject
variability. Both the spectral profiles and the mapping from resting state
to task state dynamics should have some hereditary component to them
to yield the present results (being a combination of these two) - however,
no systematic comparison has been done to assess their relative contri-
bution more precisely. Regarding the origin of this genetic component –
one possibility might be for example cortical folding, which is known to
be hereditary to a certain degree – which could affect measurements on
the scalp and ultimately source reconstructed rest and task signatures.
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However, while this might explain spatial variability it is less clear how
this would explain spectral variability (such as differences in peak fre-
quency for alpha or beta rhythms, for example).

With respect to predicting task activations from rest, what differen-
tiates our approach from most of the previous approaches (Shen et al.,
2017a,b; Tavor et al., 2016) is the challenge of an effectively 3-dimen-
sional task-structure (time-frequency-space), instead of 1D spatial acti-
vation maps. Taking this into account, the results are quite encouraging
and in terms of statistical robustness comparable to previously reported
results for prediction of spatial activation maps in fMRI (Tavor et al.,
2016). The data set used in the present study shares a subset of task
conditions with the fMRI study (both data sets being part of the Human
Connectome Project, Larson-Prior et al., 2013) and a subset of subjects.
Interestingly there is one other noteworthy difference: While our
approach (in MEG) seemed to be best at predicting ‘simple’ tasks
(involving hand or feet movements), and less good at predicting more
cognitive tasks, the approach in Tavor et al. (2016), for fMRI, showed an
opposite effect, performing best in highly cognitive tasks (e.g. language
processing). One reason for this might be the sensitivity of our model to
spontaneous or induced oscillations such as alpha or beta rhythms,
known to be modulated most clearly in functionally more ‘fundamental’
sensorimotor and posterior visual areas, and detected less in frontal or
other more ‘cognitive’ areas higher up in the neural processing hierarchy
(Srinivasan et al., 2006).

The presented framework, i.e. using transient spectral events identi-
fied via the HMM-AR to predict subject-specific task responses is not the
only way to predict trial-averaged task responses in M/EEG, or related
electrophysiological, data. Any approach that is capable of decomposing
resting state activity into spatio-spectral modesmight be similarly used to
identify links between rest and task activity. For example, methods like
non-negative matrix factorization (Lee et al., 2011), autoregressive
modes (Porcaro et al., 2009) or other sliding window approaches (O’Neill
et al., 2017) are possible options. However, the need for sliding windows
- or entirely collapsing spectral features over time - differentiates these
from the HMM approach. The unsupervised decomposition of a
time-series into consistently reoccurring, transient spectral events with
distinct spectral modes - without the need of fixing window length or
imposing another temporal structure - is potentially beneficial for the
identification of relevant, yet transient and dynamics patterns needed to
predict task responses in M/EEG.

Regarding the existence of potentially more straight-forward ap-
proaches, similarly to the scenario illustrated in Fig. 2, one has to note
that while simpler approaches in a limited use scenario might exist – i.e.
for isolated frequency bands, parcels, or tasks – we here present a data-
driven, unsupervised approach with no strong a-priori assumptions
about the exact nature of the link between resting state and task data.
Any approach that wants to offer a more general solution, is likely to
follow the principle as outlined in Fig. 1, extracting features from rest and
mapping these onto features in the task data in order to predict their
variability across subjects.

4.3. Limitations and challenges

The approach presented here has its limitations. One potential limi-
tation is that the version of the HMM-AR approach used here for esti-
mating spectral events (which were then used for the prediction of
subject-specific task-responses) – was a mass-univariate approach.
Since it uses a different HMM-AR on the single time-course of data from
each brain region. Thus, by necessity, it ignores any cross-regional in-
teractions. The univariate approach might also be a factor that explains
that in our model, sensorimotor task might be predicted better than more
cognitive tasks, but this would need further investigation. For future
studies, multivariate approaches based on time-delay embedding
(Vidaurre et al., 2018) might be exploited to enable the incorporation of
additional features (for example, connectivity measures) with the hope to
potentially increase prediction quality.
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Nonetheless, the mass-univariate approach pursued here has
demonstrated success in predicting subject-specific properties in diverse
MEG task responses. Utilizing similar HMM methodology to identify
transient spectral events in task data, a recent study has shown changes in
HMM state dynamics reflecting modulated beta oscillations as a function
of motor learning (Zich et al., 2018), adding support to the usefulness and
sensitivity of using the HMM with activity from one brain region at a
time.

4.4. Outlook & conclusion

Being able to predict time-frequency task responses and their vari-
ability in human subjects based on resting state data is highly attractive.
Potentially, this might be very useful in a clinical setting. For fMRI, the
potential clinical usefulness of task-free neuroimaging has already been
demonstrated by predicting the location of language-relevant areas in
patients from rest and its feasibility for pre-surgical planning (Parker
Jones, Voets, Adcock, Stacey and Jbabdi, 2017). This suggests that
something similar might be achieved with M/EEG in a clinical context.
The dominating device in clinical settings is the EEG (and sensor-based
analysis), but a similar approach as the one presented here for MEG
source data should be feasible for EEG as well.

In conclusion, we believe that the framework presented here helps to
better understand, model and predict inter-subject variability of task
responses. Combined with the work of Tavor et al. (2016), our results
suggest that spatial and spectral individual variability is a somewhat
stable feature, inherent to an individual’s brain.
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