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Abstract 

 

The angiotensin receptor blocker losartan has been linked to aspects of aversive learning 

such as fear acquisition and extinction, inhibition of aversive learning rates and reduced 

post-traumatic stress disorder (PTSD) symptoms. Here, we investigate the influence of 

losartan on aversive Pavlovian conditioning using a probabilistic learning paradigm . In a 

double-blind, randomised placebo-controlled design, we tested 45 healthy volunteers during 

a baseline session (session 1), after application of losartan or placebo (session 2) and 

during a follow-up session (session 3). On each session, participants engaged in a task 

where they had to predict the likelihood of an electrical stimulation on every trial while the 

true shock contingencies repeatedly switched between phases of high and low shock threat. 

Computational reinforcement learning models were used to investigate learning dynamics. 

Acute administration of losartan significantly reduced participants’ adjustment during both 

low-to-high and high-to-low threat changes. This was driven by reduced aversive learning 

rates on the drug session compared to baseline. The 50mg drug dose did not induce 

reduction of blood pressure or change in reaction times, ruling out general reduction in 

attention and engagement. Decreased adjustment of aversive expectations to low-to-high, 

but not high-to-low, threat change was maintained on a follow up session 24hrs later, 

suggesting a possible role of losartan in prevention of formation of aversive associations on 

longer time scales.   

 

Keywords: angiotensin receptor, anxiety, aversive learning fear, losartan, reinforcement 

learning 

Introduction 

With a life-time prevalence of 15-30%, anxiety disorders represent the most prevalent 

mental health problem (Alonso et al., 2007; Kessler, 2012; Kessler et al., 2009). These 

disabling conditions are associated with significant individual and economic costs, they tend 

to take a chronic course if untreated, and they are one of the most severe risk factors for 

developing depression (Andlin-Sobocki & Rehm, 2005; Kessler et al., 2009; Meier et al., 

2015). However, little is currently known about the factors contributing to anxiety onset, even 

though such knowledge is crucial for the development of early strategies that may prevent 

the development of a disorder.  

Recent research has increasingly implicated a key role of the renin-angiotensin system 

(RAS) in the development and treatment of anxiety disorders. The RAS is a key 

neuroendocrine circuit involved in blood pressure regulation. However, its receptors are also 

expressed in brain regions relevant to anxiety, including amygdala, hippocampus and the 

prefrontal cortex (Jackson et al., 2018; von Bohlen und Halbach & Albrecht, 2006). In line 

with this overlapping neural topography, the RAS has also been identified as a key player 

in hypothalamus-pituitary adrenocortical (HPA) axis modulation, inflammatory processes 

and neuroplasticity, all processes known to play a key role in anxiety (Chrissobolis et al., 

2020). 

In rodent models, increased angiotensin II levels are seen in response to stress (Kosunen 

et al., 1976). Drugs blocking angiotensin II activity, including angiotensin II receptor blockers 

(ARB) and angiotensin-converting enzyme inhibitors (ACEI), have been shown to reduce 

stress responses, to produce anxiolytic effects, and to facilitate fear extinction (Marvar et 

https://www.sciencedirect.com/topics/neuroscience/amygdala
https://www.sciencedirect.com/topics/neuroscience/hippocampus
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al., 2014; Pavel et al., 2008; Ranjbar et al., 2018). In humans, ARB have been reported to 

improve symptoms of anxiety in type 2 diabetes patients (Pavlatou et al., 2008). 

Observational data from a large patient cohort indicate that antihypertensive use of ACEI or 

ARB such as losartan is linked to reduced traumatic symptoms in the aftermath of a 

traumatic event (Khoury et al., 2012). In line with such clinical effects, we have recently 

shown that a single dose of the ARB losartan prevents a physiological stress response and 

facilitates contextual processing during experimental trauma, two processes known to be 

relevant to the development of posttraumatic stress disorder (Shkreli et al., 2020). Similarly, 

administration of losartan has been associated with reductions in subjective fear during a 

fear-inducing aversive task (Zhang et al., 2022) and encoding of negative memories (Xu et 

al., 2022).  

Taken together, such findings point to a prominent role of the RAS in threat processing and 

memory. However, no study has yet directly investigated the effect of RAS manipulation on 

Pavlovian threat learning, one of the basic learning mechanisms underlying the 

development of an anxiety disorder (VanElzakker et al., 2014; Wolpe & Rowan, 1988). 

Direct evidence for interference of RAS-modulating drugs with Pavlovian learning would 

have important implications for developments in the early detection of anxiety-risk and the 

need for preventative strategies. This study investigates the effect of angiotensin receptor 

blockade (i.e., a reduction in angiotensin II activity) on aversive learning in a probabilistic 

learning task, using shock expectancy ratings as primary outcome. Following recent 

criticism of the traditional fear extinction paradigm (Ojala & Bach, 2020) we used a paradigm 

where phases of high and low threat are matched in uncertainty. We employed 

computational modelling to understand which aspect of learning is impacted by losartan. 

While recent work has highlighted the use of computational models in understanding the 

mechanisms underlying learning in health and disease (Browning et al., 2015; Dubois & 

Hauser, 2022; Gillan et al., 2016; Lawson et al., 2017; Pulcu et al., 2019; Schlagenhauf et 

al., 2014), only two studies to date have employed this approach to study the impact of 

losartan on learning (Pulcu et al., 2019; Xu et al., 2023). Both studies used an instrumental 

learning paradigm involving monetary gains and losses. The authors reported reduction in 

loss but not gain learning rates following a single dose of losartan. Here, we extend this 

previous work by focusing on mechanisms of aversive Pavlovian learning involving primary 

reinforcers (shocks), which are more directly relevant for formation of anxiety disorders. 

Additionally, to improve precision and sensitivity of our analyses, we collect aversive 

expectancy ratings on each trial. We draw on the recent advances in computational 

modelling to develop a more detailed understanding of the specific learning subprocess 

impacted by drugs blocking angiotensin II activity. In addition to standard RL models, we 

also consider a number of plausible aspects of learning that might be impacted by the drug: 

differential learning from shocks and shock omissions (Jepma et al., 2018), context-

dependent updating (Zika et al., 2022) and accelerated learning following large prediction 

errors (Li et al., 2011). Based on previous research, we hypothesized that a single dose of 

the ARB losartan will lead to a reduction in aversive learning rates.  
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Methods and Materials 

Registration 

Prior to the start of data collection, the study was registered with Clinical Trials and 

Research Governance at the University of Oxford, publicly available via OSF: osf.io/e3zrk.  

Participants  

Forty-five healthy volunteers (age 18–39 years) were recruited through local 

advertisements. Sample size was estimated based on the two available studies that 

investigated the impact of losartan on aversive learning rates (Pulcu et al., 2019; Xu et al., 

2023). Means and standard deviations were extracted from the placebo>losartan effect on 

learning rates (Placebo M=0.25, SD=0.54; Losartan M=0.12, SD=0.35). Next, a power 

analysis by simulation was performed by generating data using a beta sampler and fitting 

the beta regression model used in the main analysis across 5000 simulations. This resulted 

in sample size estimate of forty-four participants (22 per group) at 80% power (alpha=0.05). 

To allow for potential exclusions we collected forty-five participants in total. 

Participants were included in the study if they had no history of a DSM-V Axis I disorder as 

assessed using the Structured Clinical Interview for DSM-V (First et al., 2016). Participants 

also had to have been free from CNS-active medication for at least six weeks, have a body 

mass index between 18 and 30 kg/m2, and have no first-degree family member with a history 

of a severe psychiatric disorder. The full list of inclusion and exclusion criteria is included in 

the Supp. Mat. The study was approved by the Oxford University Research Ethics 

Committee (R29583), and all participants gave written informed consent. Five participants 

had to be excluded from the study at the point of data analysis: one due to technical failure 

of the equipment, and four because even at the end of a third visit they failed to learn the 

distinction between consistently safe and threatening cues. In line with recent 

recommendations for exclusion criteria in aversive learning studies (Lonsdorf et al., 2019), 

we aimed to retain as many participants in the analyses as possible. Therefore, even 

participants who failed to show any learning in the main (reversal, see below) cue were 

included in all analyses. However, four participants failed to tell apart the stable-low and 

stable-high cues (assessed by a t-test on submitted ratings) even on the third visit which 

indicates a general lack of understanding of the task. Data of these four participants were 

therefore excluded from analyses. This left twenty participants in the losartan group (6 

female, mean age 25.5 years) and twenty in the placebo group (10 female, mean age 24.1 

years). Using the same simulation approach as above, the power in the final sample was 

77.1%. 

 

Materials and Study Design 

The study involved three visits to the Department of Psychiatry at the University of Oxford. 

Visit 1 (Baseline visit) included a medical and psychiatric screening for inclusion and 

exclusion criteria, followed by an introduction and completion of a shorter version of the 

aversive learning task to familiarise participants with the task (described below). Visit 2 

(Drug visit) included completing a battery of psychological questionnaires for group 

description, administration of one dose of losartan (50mg) or placebo one hour before 
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working on the full version of the aversive learning task. Visit 3 (Follow-up visit) took place 

one day after the Drug visit to assess any potential next-day effects. Participants also 

completed a shorter version of the aversive learning task. 

Prior to the Drug visit, participants were randomly allocated to one of two groups in a double-

blind design, either receiving a 50mg single oral dose of losartan (Cozaar, Merck Sharp & 

Dohme Ltd.) or a placebo capsule that was matched to the active drug in appearance 

(microcrystalline cellulose; Rayotabs, Rayonex GmbH). Dosing of losartan was guided by 

the intention to assess its impact on aversive learning without triggering hypotensive effects, 

which had been achieved in previous studies using 50mg losartan (Pulcu et al., 2019; 

Reinecke et al., 2018a; Shkreli et al., 2020). Testing started one hour after capsule intake, 

when drug peak plasma levels are reached (Lo et al., 1995; Ohtawa et al., 1993). Before 

and one hour after drug intake, mood and physiological symptoms were assessed using 

self-report visual analogue scales recorded using paper and pen (VAS; 0-100; Anxious, 

Tearful, Hopeless, Sad, Depressed, Sleepy, Nauseous, Dizzy, Heart racing, Alert) and 

measuring heart rate and blood pressure (Omron 705IT sphygmomanometer), to capture 

transient effects of the drug. At the end of the Drug visit, participant and experimenter 

indicated independently whether they thought losartan or placebo had been administered 

during the session.  

Data collection took place at the Warneford Hospital, Department of Psychiatry, Oxford. 

Initial screening, questionnaire completion and waiting periods (e.g., between drug 

administration and task) took place in a preparation room with natural illumination. The task 

itself took place in a testing room equipped only with artificial light which was kept on during 

testing. Participants were positioned 40 cm from a computer screen, provided with task 

instructions after which they could ask clarifying questions. Following this, participants 

completed a few practice trials and calibration of the electrical stimulations. They were also 

provided with a bell to call the researcher if they had any issues or questions throughout the 

task. During the task itself, the experimenter was not present in the same room. 

 

Questionnaires 

At the beginning of the Drug visit, participants completed a battery of psychological 

questionnaires to assess personality traits, anxiety, depression and attention regulation 

strategies (State-Trait Anxiety Inventory STAI; Spielberger, 2012; Beck Depression 

Inventory BDI; Beck et al., 1996; Attentional Control Scale ACS; Derryberry & Reed, 2002). 

Participants also completed the National Adult Reading Test NART, estimating verbal 

intelligence (Nelson, 1982). 

Aversive stimuli 

Electrical stimuli were applied using a commercial electric stimulation device (Constant 

Current Stimulator, model DS7A; Digitimer, Hertfordshire, UK), delivering a 2 monopolar 

square waveform pulse via a concentric silver chloride electrode attached to the back of the 

left hand. The stimuli were calibrated individually at the beginning of the task and during 

each break (every 10-12 minutes). The target intensity was 8 on a scale ranging from 0 (= 

not painful) to 10 (= too painful to take part) scale. The 8/10 pain level was defined as a 

sensation that is painful but tolerable for a given number of trials (visit-specific number 

corresponding to 50% of trials). Three qualitative anchor points were defined to help 

standardize the calibration across participants and studies: 1/10 which was defined as the 

https://paperpile.com/c/iYfliy/aVYtE+vzEBq+MHHZo
https://paperpile.com/c/iYfliy/aVYtE+vzEBq+MHHZo
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intensity at which the sensation starts to be moderately painful (i.e., it feels like a pin prick); 

8/10 is a sensation that is clearly painful but tolerable; and 10/10 which would be the level 

of pain which is too strong to be tolerated. The calibration followed the Method of Limits (see 

e.g., Ploner et al., 2010). The stimulus intensity started at the pre-calibrated 1/10 level and 

changed after each rating in an increasing trend (individual stimuli could, however, get 

stronger or weaker). Upon each stimulus delivery, participants were asked to report how 

painful the sensation was on a 1-10 rating scale. If a rating was higher than 8, the stimulation 

intensity was decreased for the next calibration trial. The calibration terminated once three 

out of the most recent five stimuli were rated as 8.  

 

Aversive Learning Task 

A probabilistic aversive learning paradigm was employed to measure to how participants 

learned from environments changing between periods of high and low threat, which was 

manipulated by changing the probability of receiving an electrical shock (Figure 1). A 

session consisted of 150 (visits 1 and 3) or 300 (visit 2) trials. On each trial, participants 

were presented with one of three visual cues (neutral abstract fractals, randomized across 

participants) and asked to rate their subjective shock probability (rated on a 0% to 100% 

scale, increments of 1%, collected using a slider operated by left and right keyboard arrows 

and down arrow to submit the final answer). Participants had 4 seconds to provide a rating. 

If no rating was provided on time, the trial was restarted.  After a inter-stimulus interval of 1 

s, a short electrical impulse was either delivered (shock) or omitted (no shock). 

Unbeknownst to the participants, one of the cues switched between a 75% chance of shock 

(high-threat phase) and a 25% chance of shock (low-threat phase) in phases of 30 +/- 5 

trials (“reversal” cue, presented on 50% of trials). Additionally, on half of the trials two other 

cues were presented which never changed their probability of shock, one remained always 

high (75%, stable-high-threat, cue) and one always low (25%, stable-low-threat cue). To 

ensure that participants pay attention throughout the experiment, they were instructed that 

shock probabilities signalled by the three visual cues could change at any time.  Each 

session started randomly with either a high- or low-threat phase (i.e., either with 75% or 

25% chance of shock in the reversal cue). No information was given regarding the number 

of cues or the number of switches. The task was paused every 10-12 minutes (one break 

on visits 1 and 3, three breaks on visit 2) to allow participants to rest and to re-calibrate the 

electrical stimuli. Instructions were delivered in a standardized (written) form, clarification 

questions were answered according to a curated answer list.  
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Figure 1: (a) Task structure: The objective probability of shock changed in semi-regular intervals between 

phases of high (red) and low (blue) threat. Visits 1 and 3 included 6 phases on average (short version, ~150 

trials) while on Visit 2 there were 11 phases (long version, ~300 trials). Each participant could start either with 

high or low probability of shock – the depicted schedule starts with high shock probability. (b) Each trial started 

with an inter-trial interval (ITI; 2s) during which a fixation cross was shown. When the cue appeared on the 

screen, participants had 4s to submit their shock probability rating on a scale from 0% to 100% using a slider. 

After a variable inter-stimulus interval (ISI; 1s), the outcome was delivered (shock or no-shock). The colour of 

the slider changed when a rating was submitted, and when the outcome was delivered.   

 

Behavioural measures  

Estimated switch points 

Reversals between high and low probability of shock were not signalled. Participants 

therefore had to infer that a change had occurred from the received binary outcomes (i.e., 

shock or no shock). To avoid false conclusions that can arise during averaging of temporal 

trajectories (Haider & Frensch, 2002), we used a data-driven approach to estimate the time 

point when the participant switched their beliefs after each reversal. Specifically, we 

extracted 5 trials before and 15 trials after each reversal (20 trials in total), calculated the 

cumulative sum of shock probability ratings and demeaned the time series (Page, 1954). 

The peak/trough of this series represents the point of fastest updating. For each reversal we 

labelled this point an estimated switch point.   

 

Shock probability ratings  

Participants provided a shock probability rating on each trial, ranging between 0% and 

100%. To investigate the impact of losartan on learning, we focused on the change in ratings 

compared to baseline. The data were re-aligned to the estimated switch point, the baseline 
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(three trials before switch) was subtracted and the first five trials after switch were excluded 

as ratings only stabilised after about five trials following the reversal (see Supp. Fig. 1). This 

allowed us to assess changes in shock probability ratings before and after learning. Due to 

the baseline correction, the values in high-threat phase are positive while values in the low-

threat phase are negative.  

 

Error from true reinforcement  

To directly assess whether participants under- or over-estimate the objective threat, we 

calculated their deviation from the true reinforcement rate (similarly to Zika et al. 2022). This 

was done by calculating the running mean of the binary outcomes (shocks=1 and 

noshock=0 outcomes) for each phase-type separately. This measure serves as an estimate 

of the true shock probability under the assumption that the agent knows which phase they 

are currently in. To obtain a directional measure of error, the true reinforcement rate was 

subtracted from the expectancy ratings. Therefore, negative values represent an 

underprediction of objective threat while positive values represent overprediction. 

 

 

Computational Modelling 

Fitting procedure and model comparison  

Models were fitted to the trial-by-trial shock probability data using Bayesian Adaptive Direct 

Search (BADS; Acerbi & Ma, 2017) by minimizing the negative log likelihood of the data 

given a model (under Normal distribution with SD=0.2). To assess model fit across all trials, 

BIC (Schwarz, 1978) scores were calculated. To prevent convergence to local extremes, 

fitting was performed using random starting value 200 times for each participant, visit and 

cue, ensuring that computational resources were identical across models. From the 200 

draws, the fit with lowest BIC was selected for model comparison. Model comparison was 

performed by calculating the mean BIC score per model and by computing the percentage 

of participants best fitted by each model.  

Computational models 

In line with similar experimental approaches (Browning et al., 2015; Jepma et al., 2018; 

Pulcu et al., 2019), we employed a modelling framework based on reinforcement learning 

(Sutton & Barto, 2018). Specifically, we built three models that were variations of the 

Rescorla-Wagner learning rule (Rescorla & Wagner, 1972), and one model with an adaptive 

learning rate (Pearce-Hall). Under RW, an agent holds a belief about the current probability 

of shock P. On each trial, this belief is updated using a prediction error (PE), that is, the 

difference between the current expectation Pt (continuous values between 0 and 1) and the 

outcome Ot (coded as 1=shock, 0=shock omission). Positive PEs lead to an increase in 

expected probability of a shock, while negative prediction errors lead to its decrease. 

Additionally, the PE is weighted by a free parameter α (continuous value between 0 and 1), 

which controls how much of the error is incorporated into the belief about probability of shock 
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on the next trial. Large values of α lead to rapid updating, while small values of alpha lead 

to slower learning. See Equation 1.  

 

Eq. 1 𝑃𝑡+1 = 𝑃𝑡 + α(𝑂𝑡– 𝑃𝑡) 

 

In all models, the first value was estimated as a free parameter (𝑃1 ∈ [0,1]). 

 

Outcome-sensitive model (RW-outcome-3) 

Previous studies found faster learning from shocks compared to no-shocks (e.g., Jepma et 

al., 2018). To distinguish between learning from shocks and no-shock, we specified a model 

with separate learning rates for the two event types: αsh  ∈  [0,1] 𝑎𝑛𝑑 α𝑛𝑜𝑠ℎ ∈ [0,1]). See 

Equation 2.  

 

Eq. 2            𝑃𝑡+1 = 𝑃𝑡 + α𝑠ℎ(𝑂𝑡– 𝑃𝑡)  if shock (𝑂𝑡 = 1) 

                             𝑃𝑡+1 = 𝑃𝑡 + α𝑛𝑜𝑠ℎ(𝑂𝑡– 𝑃𝑡) if no-shock (𝑂𝑡 = 0) 

 

Phase-sensitive model (RW-phase-3) 

Alternatively, participants may only be sensitive to the current context (high- versus low-

threat phase). We therefore specified a model with separate learning rates for the two 

phases: αℎ𝑖𝑔ℎ   ∈  [0,1] and α𝑙𝑜𝑤 ∈ [0,1]. See Equation 3 

 

Eq. 3            𝑃𝑡+1 = 𝑃𝑡 + α𝑙𝑜𝑤(𝑂𝑡– 𝑃𝑡)  if low-threat-phase  

                        𝑃𝑡+1 = 𝑃𝑡 + αℎ𝑖𝑔ℎ(𝑂𝑡– 𝑃𝑡) if high-threat-phase  

 

Outcome- and phase-sensitive model (RW-both-5) 

To account for the possibility that outcomes (shocks/no-shocks) are treated differently 

depending on the current context (high- versus low-threat phase), we combined the previous 

two models (RW-outcome-3 and RW-phase-3), which resulted in four learning rates: 

α(𝑠ℎ,ℎ𝑖𝑔ℎ)  ∈  [0,1], α(𝑠ℎ,𝑙𝑜𝑤)  ∈  [0,1], α(𝑛𝑜𝑠ℎ,ℎ𝑖𝑔ℎ)  ∈  [0,1] and 𝛼(𝑛𝑜𝑠ℎ,𝑙𝑜𝑤)  ∈  [0,1]. See 

Equation 4.  

 

Eq. 4       𝑃𝑡+1 = 𝑃𝑡 + α(𝑠ℎ,𝑙𝑜𝑤)(𝑂𝑡– 𝑃𝑡)  if low-phase and shock  

                          𝑃𝑡+1 = 𝑃𝑡 + α(𝑛𝑜𝑠ℎ,ℎ𝑖𝑔ℎ)(𝑂𝑡– 𝑃𝑡) if high-phase and no-shock 

       𝑃𝑡+1 = 𝑃𝑡 + α(𝑠ℎ,𝑙𝑜𝑤)(𝑂𝑡– 𝑃𝑡)  if low-phase and shock  

                          𝑃𝑡+1 = 𝑃𝑡 + α(𝑛𝑜𝑠ℎ,ℎ𝑖𝑔ℎ)(𝑂𝑡– 𝑃𝑡) if high-phase and no-shock 

 

Pearce-Hall (PH-5) 

All previous models assume a fixed learning rate across all trials within a condition. 

However, surprising outcomes (i.e., large PEs) have been shown to increase the learning 

rate (Li et al. 2011). Therefore, to test for the possibility that learning rates are dynamically 

adjusted depending on recent prediction errors, we adopted the Pearce-Hall model used in 

a number of previous studies (Li et al., 2011; Norbury et al., 2018; Tzovara et al., 2018). 

Similar to the RW rule (Eq. 1), the model updates current shock probability estimates by a 

weighted PE. However, unlike in RW, the learning rate α can change from trial to trial (Eq. 

5). This trial-specific learning rate α𝑡+1 is updated by a weighted combination of the current 

absolute prediction error |𝑃𝐸𝑡| and the learning rate α𝑡. The parameters ηsh ∈ [0,1] and 

ηnosh ∈ [0,1] control the degree to which the current absolute PE influences the learning rate 
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on the next trial. The sum is then scaled using the parameter. Note that if η = 0 the model 

is identical to Rescorla-Wagner model with fixed learning rate.  

 

Eq. 5 𝑃𝑡+1 = 𝑃𝑡 + α𝒕(𝑂𝑡– 𝑃𝑡) 

 

Eq. 6     α𝑡+1 = κ[η𝑠ℎ|𝑃𝐸𝑡| + (1 − η𝑠ℎ)α𝑡] if shock 

  α𝑡+1 = κ[η𝑛𝑜𝑠ℎ|𝑃𝐸𝑡| + (1 − η𝑛𝑜𝑠ℎ)α𝑡] if no-shock 

 

Parameter recovery 

In order to ensure identifiability and interpretability of model estimates, the models were 

subjected to a parameter recovery procedure. First, each model was used to generate 

artificial datasets, such that the full range of parameter values and their combination was 

represented. Second, the model was fitted to the artificial data. Third, the original 

parameters were correlated with the recovered values.  

Parameters of all four models recovered well – the lowest recovery rate was r=.91 (the 

starting value of 𝜂 in the Pearce-Hall model). All three parameters of the winning model 

recovered perfectly (r=1.00). The full parameter recovery matrices can be found in the 

Supplementary Material.   

  

Statistical Analyses  

Data were collected using custom MATLAB 2016 and PsychToolbox 3 code. All analyses 

were performed using MATLAB 2019b and R version 3.6. Full list and versions of used 

packages is provided in the associated GitHub repository. 

Questionnaire, Physiological and Sociodemographic Data 

All questionnaires were analysed according to their respective manual. Group differences 

on sociodemographic and questionnaire data were tested using t-tests (continuous 

variables) or χ2(frequency variables) tests. The effect of losartan on physiological and VAS 

measures between baseline and drug-peak level was assessed using a linear effects 

models and subsequent ANOVA.  

Behavioural data  

Statistical analyses of ratings-derived measures (change in probability, estimated switch 

point) were performed using linear mixed effects models (LMM) with participant as a random 

effect (lmer package in R; Bates et al., 2015) and a subsequent ANOVA (from the lmerTest 

package). Post-hoc t-tests were corrected for multiple comparisons using the Holm (Holm, 

1979) correction (as implemented in the emmeans package). Each session started 

randomly with either a high- or low-threat phase (i.e., either with 75% or 25% chance of 

shock). To control for any effect of starting probability, it was included in all statistical models 

as a random intercept. Since the random effects are identical for all analyses, we only 

mention what fixed effects were included in each analysis.  
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Model Parameters 

Learning rates estimated by the winning model naturally follow a beta distribution (i.e., they 

range between 0 and 1, can be zero or one-inflated, and they are often negatively skewed). 

To respect this property and to maximise statistical sensitivity, we analysed learning rates 

using a generalized beta regression (Ferrari & Cribari-Neto, 2004) with logit link function 

(glmmTMB package; Brooks et al., 2017). Additionally, we also fitted a Gaussian GLM with 

linear mapping (identity link function) and compared the two models. The BIC (and root 

mean squared error; RMSE) scores suggest sizeable improvement in model fit using beta 

regression: BICbeta = -602 (RMSE=0.066), BIClinear= -352 (RMSE=0.208). Identical to the 

behavioural data, participant and starting probability were included as random effects. The 

statistical test of the model parameters was performed using the Type II Wald Chi-squared 

test (using the car package).   

 

Results 

Group Matching and Drug Side Effects 

The two groups were well-matched on sociodemographic and questionnaire parameters 

(Table 1). There were no group differences in heart rate, blood pressure, mood and 

physiological symptoms VAS rating changes from baseline to drug peak level, all F(1,38) < 

2.21, p>.15. (Table 2). Furthermore, neither the participants nor the experimenter were able 

to indicate above chance whether the participant had been allocated to the drug or the 

placebo group (experimenter: 40% correct, patients: 50%; both 𝜒2 < 0.98, p>.32). These 

findings suggest that double-blindness towards drug randomisation was maintained 

throughout the study.  

 

Table 1: Sociodemographic, clinical and personality characteristics in the losartan versus 

placebo group (M, SD, and t-test/ X2-test p-scores). 

 Losartan (N=20)  Placebo (N=20) 

 M SD  M SD 

Sociodemographic Data      

Gender female  30%  50% 

First language English  75%  85% 

Age in years 25.6 4.7  24.2 4.3 

Verbal intelligence (NART) 115 6.9  111 9.9 

Years of education 16.8 2.6  17.4 2.2 

Clinical and Personality Measures   

Trait Anxiety (STAIT) 34.9 8.5  37.0 7.28 

Beck Depression Inventory (BDI) 4.0 6.19  5.05 6.46 

 

Attentional Control (ACS)  

     

Total 58.2 7.9  56.6 9.5 



Zika et al. 

12 

Focusing 26.0 5.20  25.1 4.41 

Shifting 32.2 4.7  31.5 5.84 

Note: NART = National Adult Reading Test; STAIT = State-Trait Anxiety Inventory; BDI = Beck Depression 

Inventory; ACS = Attentional Control Scale. 

 

Table 2 Heart rate, blood pressure and visual analogue scale ratings in the two groups 

before drug intake and at drug peak-level.  

 Baseline  Drug Peak   

 Losartan  Placebo  Losartan  Placebo  

 M SD  M SD  M SD  M SD p 

Physiological Measures              

Heart rate 75 12  73 10  66 8  66 8 .83 

Systolic blood pressure 124 16  125 14  119 16  119 14 .83 

Diastolic blood pressure 71 9  74 10  69 8  73 11 .70 

Visual Analogue Ratings              

Anxious 7 7  11 12  4 4  7 10 .95 

Tearful 2 2  4 8  2 2  3 6 .73 

Hopeless 4 9  5 11  3 5  4 8 .95 

Sad  3 5  6 9  4 7  4 5 .27 

Depressed 2 3  5 8  2 3  4 7 .65 

Sleepy 17 14  18 17  18 17  21 17 .80 

Nauseous 2 3  5 11  3 4  4 8 .67 

Dizzy 4 7  5 6  7 12  6 11 .66 

Heart racing 7 11  7 9  3 3  5 7 .56 

Alert 45 32  52 29  44 33  45 30 .71 

Flushed 10 9  16 21  4 7  6 9 .45 

Note: The p-values in the right-most column correspond to the interaction between visit and group.  

 

Behavioural results 

Data quality and control measures 

To investigate any task-related differences between groups, we compared both groups with 

respect to objective shock intensity, reaction times, initial aversive bias (expected probability 

reported on the first trial), association with objective starting probability of the reversal cue 

(25% or 75%) and the ability to learn shock probabilities in control stable cues from data 

assessed during the critical drug session. There was no difference in the calibrated shock 

intensity between the groups (Ilosartan = 1010 mA; SDlosartan = 1850; Iplacebo = 514 mA; SDplacebo 

= 673), t(36)=-.96, p=.34, starting probability, 𝜒2 = 0.13, p =.72 or initial bias (Blosartan = 44%; 

SDlosartan = .14; Bplacebo = 53%; SDplacebo = .22), t(32)=-1.60, p=.12. Additionally, the drug did 

not impact reaction times during the drug visit in relation to baseline visit, 𝜒2 < 2.61, p>.27 

(assessed by Gamma GLM). The mean shock probability reported for the control stable 
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cues in the drug session did not differ significantly from the true contingencies (assessed by 

one-sample t-test, p-values corrected): In the stable-low-threat cue (true probability: 25%), 

the mean probability ratings were 22.4% (losartan), t(19)=-2.34, p=.12, and 27.4% 

(placebo), t(19)=1.05, p=.49, in the stable-high-threat cue (true probability: 75%), they were 

75.4% (losartan), t(19)=-2.34, p=.49, and 73.5% (placebo), t(19)=-2.16, p=.13. There were 

no significant differences in probability ratings between groups tlow(35)=-1.09, p=.28, 

thigh(38)=.34, p=.73. These quality checks confirm that starting probability did not relate to 

the group assignment, that participants in both groups did not have any initial bias or 

difference in shock intensity, and that both groups were able to learn shock contingencies 

well.  

 

To check whether drug-induced changes were due to mechanisms of aversive learning or 

general decrease in attention/physiological relaxation we analysed any changes in blood 

pressure between baseline and peak on the drug visit in relation to ratings and learning 

rates (the two main outcome measures). There was no main effect or interaction with drug 

in either systolic or diastolic blood pressure in ratings or learning rates on either drug or 

follow-up visit, all Fs<1.27, ps>.26. 

Estimated switch points 

The estimated switch points were used to realign behavioural data to the point when 

participants switched their beliefs from high- to low-threat and vice versa. The mean switch 

point value was 4.52 trials (SD=3.40) after the true change in contingencies. To assess any 

differences in the estimated switch points we constructed a LMM (DV: switch point; fixed 

effects: group, phase and visit). The model found no significant main effect or interaction (all 

ps > .18), suggesting that losartan had no impact on the time-point at which participants 

indicated a switch in contingencies. The estimated switch points were used to realign raw 

data (see Figure 2a). 

Probability ratings 

Baseline-corrected probability ratings were modelled using LMM with phase (low/high 

threat), visit (baseline, drug, follow-up) and group (losartan/placebo) as fixed effects (Figure 

2b). The ANOVA test found significant main effects of phase and group. As expected, the 

ratings were positive in the high-threat phase (30.2%) and negative in the low-threat phase 

(-28.1%), F(1, 2197)=5112, p<.001. Across high and low threat phases, the probability 

ratings were lower for losartan (-0.01) compared to placebo (2.6%), F(1, 2135)=13.78, 

p<.001. Furthermore, there were significant interactions between group and visit, group and 

phase, and group, phase and visit. Post-hoc tests revealed no significant group difference 

for either low- or high-threat phase ratings on the baseline visit (v1). On the drug visit (v2), 

mean ratings were significantly lower in the losartan than the placebo group in the high-

threat phase, thigh(3841)=-6.559, p<.001 (losartan: 22.6%; placebo: 32%), and significantly 

higher than placebo in the low-threat phase, tlow(3849)=4.533, p<.001 (losartan: -23.5%; 

placebo: -30.3%), suggesting that participants in the losartan group adjusted their shock 

probability ratings less through learning. The high-threat-phase group difference (but not the 

low-threat difference) remained significant on follow-up visit (v3), thigh(3786)=-6.69, p<.001 

(losartan: 22.2%; placebo 39.2%), tlow(3819)=2.15, p=.50 (losartan: 26.9%; placebo 30.6%).  

Next, we tested whether the changes observed on the drug and follow-up visits relative to 

the baseline visit are driven by losartan or placebo. To answer this question, we directly 
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compared differences between visits. First, we focused on the low-to-high-threat switches. 

There was a decrease in ratings during high threat phase in the losartan group 

(baseline=30.7%, drug=22.6%, follow-up=22.2%), the ratings were decreased in both drug 

visit, t(2867)=4.11, p<.001, and follow-up visit, t(3428)=3.53, p=.001, compared to the 

baseline visit. In the placebo group (baseline=34.2%, drug=32%, follow-up=39.2%), there 

was no significant difference in either session compared to baseline, both ps > 0.08.  

Second, we analysed the high-to-low-threat switches in the same way. In the losartan group 

(baseline=-28.1%, drug=-23.5%, follow-up=-26.9%), the high-to-low ratings adjustment in 

the drug visit was significantly slower compared to the baseline visit, t(3141)=-2.75, p=.018. 

There was no difference in ratings on the follow-up visit, t(2719)=-.68, p=.50. In the placebo 

group (baseline=-29%, drug=-30.3%, follow-up=-30.6%), neither session after drug 

administration was significantly different from baseline, both ps > 0.96.  

As a next step, we formally tested whether the change between the visits differed between 

groups (formalized as a contrast of contrasts). The change in adjustment between baseline 

and drug visits was significantly reduced in the losartan group, in both low-to-high, t(3864)=-

2.31, p=.042, and high-to-low, t(3863)=2.48, p=.040, switches. Comparing the follow-up visit 

with baseline, losartan was found to significantly reduce probability adjustment in low-to-

high, t(3865)=-3.73, p<.001 but not high-to-low adjustment, t(3859)=1.01, p>.31 compared 

to placebo. 

Finally, we tested whether losartan selectively impacted either low-to-high or high-to-low 

switches differed compared to baseline visit. There was no difference in the magnitudes on 

the drug visit, t(3537)=.53, p>.59. On the follow up visit, losartan was found to reduce ratings 

significantly more in the low-to-high condition compared to high-to-low condition, 

t(3775)=3.76, p=.001. 

In summary, these results suggest losartan reduces ratings adjustment compared to 

placebo. Upon acute administration of the drug, this drug-specific effect affects both high-

to-low and low-to-high switches, i.e., reducing learning overall. However, on the follow-up 

visit, only low-to-high threat ratings are reduced, indicating selective prolonged reduction in 

learning in relative threat, but not in relative safety. 
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Figure 2 (a) Shock probability ratings on each trial split by drug group and threat phase. Data were aligned to 

the estimated switch point. Thick lines show mean while shaded areas show standard error of the mean. (b) 

Baseline-corrected probability rating change for each visit and threat phase. Values on the y-axis represent the 

change in ratings between baseline (trials 1-3 prior to switch) and after learning (trials 5-15 after the switch). 

Therefore, positive values reflect an increase in shock probability ratings (i.e., increase in shock expectancy), 

while negative values reflect a decrease in shock probability ratings. The central line on each summary box 

represents the median, the box itself reflects median +/- 1.58*IQR/sqrt(n), while the whiskers show the range of 

the data excluding outliers (for further details see the default settings of the ggplot2:geom_boxplot() function). 

Angled rectangles represent predictions of the fitted LMM model. The figure shows data for N=40 participants, 

N=20 in each drug group. 
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Error from true reinforcement 

The previous analyses focused on the differences between groups. Here, we specifically 

ask whether participants in the two groups under- or over-predicted threat in each phase. 

To assess this, we analysed the error from the true reinforcement measure described above. 

Participants in both groups significantly over-predicted the probability of shock in the low-

threat phase. In the placebo group, the over-prediction rates across the three sessions were: 

25.3%, 21.9% and 20.5%; in the losartan group, they were: 24.9%, 25.7% and 22.1%, all 

ps < .002. In the high-threat phase, there were differences between sessions. During 

baseline, ratings of both groups did not deviate significantly from the true reinforcement rate: 

M(v1, placebo)=-5.4%, t(v1, placebo)(19)=-1.15, n. s.; M(v1, losartan)=-7.2%, t(v1, losartan)(19)=-1.60, n. s. 

During the drug and follow-up visits, ratings of the placebo group were not different from the 

true reinforcement level, M(v2, placebo)=-2.24%, t(19)=-.61, n. s., M(v2, placebo)=-5.0%, t(17)=-1.30, 

n. s. The losartan group, on the other hand, showed underprediction of threat on the drug 

and follow-up visits, M(v2, losartan)=-12.8%, M(v3, losartan)=-13.3%. After correction for multiple 

comparisons this effect only remained significant for the drug visit, t(19)=-3.67, p=.010, but 

not the follow-up visit, t(19)=-2.63, p=0.082. In summary, these results suggest that the 

application of losartan leads to an underprediction of threat.       

 

Taken together, an acute administration of losartan was found to reduce adjustment of 

ratings in switches from low-to-high and high-to-low threat. This reductive effect was still 

present in a follow-up session one day later but only in low-to-high threat switches. Zooming 

in specifically on threat estimation in relation to objective shock contingencies, both groups 

overpredicted probability of shock in the low-threat context. Following acute administration, 

losartan led to an underprediction of threat in the high-threat context.    

Modelling results 

Model comparison  

Both model comparison methods agreed on the Rescorla-Wagner model with separate 

learning rates for shocks and no-shocks as the best fitting model. The BIC scores were: -65 

(PH-5), -82 (RW-outcome-3), -69 (RW-phase-3) and -72 (RW-both-5) (Figure 3a). 65% of 

participants (N=26) were best fitted by the RW-outcome-3 model, 12.5% (N=5) by the PH-

5, 12.5% (N=5) by the RW-both-5 and 10% (N=4) by the RW-phase-5 model. There were 

no differences in fit between the two groups (assessed by LMM with model and group as 

fixed effects). These results suggest that differential learning from shocks and no-shocks is 

the most prominent feature in the way participants in both groups updated their beliefs. 

Importantly, neither dynamic learning rates (Pearce-Hall) nor the current phase (low- vs. 

high-threat) were found to improve fit over the outcome-based model. Therefore, we next 

focus on analysing the parameters of the winning model in relation to the drug manipulation.     

Learning rates 

The learning rates for shock (αsh) and no-shock (αnosh) outcomes of the winning model were 

analysed together using beta GLM with visit (baseline/v1, drug/v2, follow-up/v3), group 

(losartan, placebo) and outcome type (shock, no-shock) as fixed effects. The model found 

a significant main effect of outcome: learning from shocks (αsh=0.12) was significant faster 

than learning from no-shocks (α𝑛𝑜𝑠ℎ=0.08), χ2(1)=31.05, p<.001 (Figure 3b). Furthermore, 
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group was found to significantly interact with visit, 𝜒2(2) =17.44, p<.001. There was no 

change in learning rates in the placebo group (α𝑣1,𝑝𝑙𝑎𝑐= 0.12 α𝑣2,𝑝𝑙𝑎𝑐= 0.13 α𝑣3,𝑝𝑙𝑎𝑐= 0.12), 

tv1>v2(225)=-2.21, n.s., tv1>v3(225)=-1.52, n.s., tv2>v3(225)=0.72, n.s.. In the losartan group, 

learning rates were significantly lower during the drug (v2) and follow-up visits (v3) 

compared to the baseline visit (v1)(α𝑣1,𝑙𝑜𝑠𝑎𝑟𝑡𝑎𝑛= 0.12 α𝑣2,𝑙𝑜𝑠𝑎𝑟𝑡𝑎𝑛= 0.08 α𝑣3,𝑙𝑜𝑠𝑎𝑟𝑡𝑎𝑛= 0.08), 

tv1>v2(225)=3.155, p=.011, tv1>v3(225)=3.013, p=.014. Learning rates did not differ between 

visits 2 and 3, tv1>v3(225)=-.126, n.s. (Figure 3c) in this group. Next we tested whether the 

reduction in learning rates was significantly different between losartan and placebo by 

investigating contrast of contrasts using the emmeans package, e.g., for v1 and v2: 

(α𝑣2,los  −  α𝑣1,𝑙𝑜𝑠)  − (α𝑣2,𝑝𝑙𝑎𝑐  −  α𝑣1,𝑝𝑙𝑎𝑐). This analysis revealed that the between-session 

reduction of learning rate was larger in the losartan compared to the placebo group on both 

drug, t(225)=-3.77, p=.001, and follow-up, t(225)=p-.001, visits.  

 

 
Figure 3: (a) Model comparison results showing demeaned BIC scores for the four models; lower values 

indicate better fit. Statistically significant effects of the model-estimated learning rates: (b) learning from shocks 

was overall faster than learning from no-shocks; (c) losartan reduced the learning rates on drug and follow-up 

visits compared to the baseline visit; there was no difference in learning rates in the placebo group.  

 

 

Next, we tested how the parameters of the winning model relate to the behavioural effects. 

In particular, the behavioural results suggest that losartan decreases shock probability 

adjustment in high- and low-threat phases on the drug visit. Additionally, the decrease in the 

high-threat phase remained significant at the follow-up visit. However, the model 

comparison revealed that the data are best explained by learning rates sensitive to specific 

outcomes (shock/no-shock), not high-/low-threat phases. Therefore, to investigate how 

differential learning from shocks and no-shocks relates to shock probability adjustment, we 

performed a correlation analysis on data averaged across the visits. In the low-to-high-threat 

phase switches, learning rates for both outcomes were positively correlated with the 

adjustment in probability ratings, r(shock, high)(38)=.57, p<.001, r(no-shock, high)(38)=.66, p<.001. In 

the high-to-low-threat switches (where probability change is negative, Figure 2), both 

learning rates were negatively correlated with the behavioural marker, r(shock, low)(38)=.-.47, 

p=.002, r(no-shock, low)(38)=-.77, p<.001. 

 

In summary, the modelling analysis revealed that losartan reduces aversive learning rates. 

This effect was present upon acute administration as well as on a follow up visit 24 hrs later. 
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Importantly, losartan did not reduce learning from a specific outcome type, i.e., learning from 

both shock and no-shock events was reduced.  

 

Discussion 

Our findings show that a small dose of the angiotensin II receptor antagonist losartan 

dampens learning in aversive environments. Acutely, this results in underprediction of threat 

in high-threat context (i.e., reduction in threat learning) and overprediction of threat in low-

threat context (i.e., reduction in safety learning). One day later, aversive learning rates in 

the losartan group remain lowered compared to the baseline visit. Importantly, on the follow 

up visit, only the reduction in threat learning is maintained, while safety learning no longer 

differs from that seen in the placebo group. These results suggest a potential role of losartan 

in the prevention of developing fear-related memory associations.  

 

Interestingly, while learning rates were generally higher for shocks compared to no-shocks 

(similarly to Cazé & van der Meer, 2013; Jepma et al., 2018), this difference was not 

modulated by the drug. Instead, losartan resulted in reduction of learning from all events 

across both high- and low-threat contexts. Taken together, these results suggest that a 

single dose of losartan reduces learning in aversive environments rather than from aversive 

events.  

 

In the task, participants had to follow switches between high and low probability of receiving 

a shock (i.e., threat). Our analyses focused on the way in which individuals adjust their 

subjective belief about the probability of shock and how these adjustments are modulated 

by losartan. We found that when the objective shock probability changed from low to high 

(i.e., high threat context), the losartan group increased their expectations to a lesser degree 

than the placebo group. In turn, such a reduction in the perception of threat might be one of 

the mechanisms underlying reduced PTSD symptoms development, which has been 

associated with ARB intake (Khoury et al., 2012; Seligowski et al., 2021), autonomic stress 

response (Shkreli et al. 2020) and negative memory encoding (Xu et al., 2022).  When the 

probability of shock changed from high to low (i.e., low threat context), the losartan group 

also showed less adjustment to reflect the now lower shock probability. Instead, they 

reported higher shock probabilities than the placebo group. Importantly, only the reduction 

in adjustment of subjective aversive estimates to high threat was maintained throughout a 

24-hour follow-up period, highlighting the lasting impact of losartan on disrupting aversive 

acquisition beyond acute drug effects. While these findings highlight a potential long-term 

preventive effect of ARBs on aversive learning, it is important to consider general reduction 

in learning, including safety learning, upon acute administration.  

 

Our modelling analyses revealed that the decrease in shock probability adjustment was 

associated with a reduction in aversive learning rates. This aligns with previous work that 

found a link between losartan and a reduction in aversive, but not appetitive, learning rates 

(Pulcu et al., 2019; Xu et al., 2023). Our results extend the previous finding in several ways. 

First, the trial-by-trial readouts of participants’ subjective shock probability allows us to 

directly link the observed behaviour to model estimates. As pointed out by Palminteri et al. 

(2017), learning rates can reflect a variety of underlying behaviours and should therefore be 
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linked back to relevant behavioural readouts. We show that the decrease in learning rates 

is related to reduced adjustment of aversive expectations. This indicates that the model 

meaningfully captures the behavioural effect. Second, we used a Pavlovian conditioning 

task with primary reinforcers (as opposed to an instrumental task with secondary 

reinforcers). This is an important distinction, as Pavlovian learning is believed to underlie 

the formation of a number of anxiety and stress-related disorders (Fanselow & Sterlace, 

2014; VanElzakker et al., 2014). 

 

Taken together, these findings provide preliminary evidence that angiotensin II receptor 

blockade may be effective in preventing the development of anxiety disorders, by specifically 

interfering with learning under threat. However, such effects need to be replicated in large 

prospective studies, looking at the link between RAS variation or manipulation and the onset 

of DSM-V anxiety disorders. Specifically, future studies may identify a link between 

increased endogenous angiotensin II levels and an increased risk of prospective anxiety 

onset, similarly to observations in rodents (Duchemin et al., 2013; Gao et al., 2021). Such 

findings would have implications for the development of a simple blood test screening for 

anxiety risk that may inform triage to early preventative strategies.  

Another important avenue would be to investigate whether reduction in learning changes 

the strength of context-dependence of acquisition and extinction. For example, individuals 

high in trait anxiety have been recently associated with increased context-dependent 

learning, which is believed to increase the rates of return of fear (Zika et al., 2022). More 

gradual adjustment of aversive beliefs has been associated with overriding previous 

aversive memories, rather creation of separate internal safety context (Gershman et al., 

2013). In our data, losartan reduced learning in both high-to-low and low-to-high switches. 

While one interpretation is that this reflects a decrease in safety/threat learning, it may also 

reflect a tendency to gradually update existing associations rather than creating a separate 

internal context. A specific testable prediction of this alternative hypothesis would be that 

losartan decreases the rates of return of fear (e.g., spontaneous recovery or reinstatement; 

see Gershman and Hartley, 2015).   

 

There are some limitations to this study. First, the task does not contain a control condition 

with appetitive or neutral stimuli (e.g., statistical learning). In turn, it remains inconclusive 

whether the reduction in Pavlovian learning is specific to aversive contexts or whether the 

drug reduces learning overall. Previous work identifying an aversion-specific role of losartan 

employed an instrumental, rather than a Pavlovian, learning task. Second, while a follow-up 

was performed 24 hours after the original drug session, long-term retention was not 

assessed. Investigating the duration of the reductive aversive learning effect would be useful 

in assessing preventive effects of losartan on formation of aversive associations. Further 

research is therefore needed to assess the duration of the reductive learning effect of 

losartan, particular in relation to the prevention of development of excessive fear and to 

return of fear phenomena such as reinstatement or spontaneous recovery. Nevertheless, 

our results highlight the potential preventative role of losartan in the formation of aversive 

associations, especially at longer time scales.  
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