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Explainable artificial intelligence for mental health through
transparency and interpretability for understandability
Dan W. Joyce1,2✉, Andrey Kormilitzin1, Katharine A. Smith 1,3,4 and Andrea Cipriani 1,3,4

The literature on artificial intelligence (AI) or machine learning (ML) in mental health and psychiatry lacks consensus on what
“explainability” means. In the more general XAI (eXplainable AI) literature, there has been some convergence on explainability
meaning model-agnostic techniques that augment a complex model (with internal mechanics intractable for human
understanding) with a simpler model argued to deliver results that humans can comprehend. Given the differing usage and
intended meaning of the term “explainability” in AI and ML, we propose instead to approximate model/algorithm explainability by
understandability defined as a function of transparency and interpretability. These concepts are easier to articulate, to “ground” in
our understanding of how algorithms and models operate and are used more consistently in the literature. We describe the TIFU
(Transparency and Interpretability For Understandability) framework and examine how this applies to the landscape of AI/ML in
mental health research. We argue that the need for understandablity is heightened in psychiatry because data describing the
syndromes, outcomes, disorders and signs/symptoms possess probabilistic relationships to each other—as do the tentative
aetiologies and multifactorial social- and psychological-determinants of disorders. If we develop and deploy AI/ML models, ensuring
human understandability of the inputs, processes and outputs of these models is essential to develop trustworthy systems fit for
deployment.
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INTRODUCTION
In this review article, we examine explainable AI ("XAI”) in the
specific context of psychiatric/mental health applications. Across
healthcare, there is an emerging skepticism for the ambitions of
general XAI, with recommendations1,2 to avoid so-called “black
box” models altogether. An AI is opaque or “black-box” when the
computational mechanisms intervening between an input and the
AI’s output are too complex to afford a prima facie description of
why the model delivered that output—the exemplar case being
deep neural networks where computational complexity affords
remarkable flexibility usually at the cost of increasing opacity.
Historically, inductive data-driven methods were considered
difficult for humans to understand and this was recognised in
early applications of AI in medicine3 where research favoured the
explicit capture of clinical heuristics using symbolic propositions
and inference mechanisms imported from formal logic. Similarly,
when developing MYCIN4 the authors preferred decision trees
because “in order to be accepted by physicians [the system]
should be able to explain how and why a particular conclusion has
been derived”. In mental health, the need for explainability was
articulated in early AI-based diagnostic applications; for example,
in developing DIAGNO-II5 statistical methods (linear discriminant
functions and Bayesian classification) were compared to decision
trees. In the absence of any clear performance advantages
between the three methods, the authors concluded that decision
trees were preferred because the data, the system’s structure and
the computations performed all stood in close correspondence
with clinicians’ domain knowledge alongside an assumption that
clinicians use a similar sequential rule-in/rule-out style of reason-
ing when making diagnoses.

These examples center the structure and functioning of
algorithms and suggest both should stand in close correspon-
dence with a putative model of how clinicians reason with
information about patients. Here, model structure refers to the
model’s parameterisation whereas function refers to the computa-
tional processes that transform inputs to outputs (a concrete and
tutorial example is given in Supplementary Information). In the
contemporary literature, this is described as “intrinsic interpret-
ability”2. As most contemporary AI methods used in healthcare
applications are inductive, data-driven and very often, “black-box”
(particularly given the popularity of deep learning methods)
intrinsic interpretability’s prescription for a human-understandable
correspondence between inputs and outputs of the black-box
model are absent resulting in the development of post-hoc
techniques where another algorithm operates in parallel to the
‘main’ black-box model to provide “explanations”.
The fundamental reason for pursuing explainability is that

healthcare professionals and patients must be able to trust AI
tools; more precisely, a trustworthy AI implies that human actors
may rely6 on the tool to the extent they can economise on human
oversight, monitoring and verification of the system’s outputs. To
trust a deployed algorithm or model, we must have some
understanding of how it arrives at an output, given some input.
We therefore propose a framework for transparent and inter-
pretable AI (Fig. 1), motivated by the principle of trustworthiness7

using the following rubric:
Definition (Understandable AI). For an AI to be trustworthy, it

must be valid, reliable and understandable. To be understandable,
an AI must be transparent and interpretable and this is an
operationalised approximation for explainability.
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In what follows, we present the TIFU framework (Transparency
and Interpretability For Understandability) focusing on under-
standability as a composite of transparency and interpretability.
The important concepts of model reliability and validity are
beyond the scope of this work but have received attention and are
well described in the literature8; briefly, to be reliable and valid, a
model’s predictions or outputs must be calibrated and discrimi-
nating with respect to an observed outcome (or ground truth) and
in addition, be generalisable (i.e. externally validated) so the
model remains accurate and useful when deployed on new data
not used during the model’s development9–11.
We proceed by first, surveying the mental health and

psychiatric literature claiming to deliver explainable AI in a variety
of application domains. Then, we highlight the connections to
existing literature, drawing together consistent and concrete
definitions that support the TIFU model. Throughout, we adhere
to a convention of discussing understandability rather than

“explainability”. Finally, we conclude with observations and
recommendations for building systems that adhere to TIFU.

DIVERSE DEFINITIONS
To motivate our proposal, we searched PubMed and established
that specific applications of XAI in mental health and psychiatry
first began appearing in 2018 shortly after the inaugural
International Joint Conference on Artificial Intelligence Workshop
on Explainable AI in 201712. We then surveyed papers published
from 1st January 2018 through 12th April 2022 to examine how
the term “explainable” is used in this literature. We found a
diversity of definitions with a loose—often vernacular—meaning.
We located 25 papers eligible for review, of which 15 were original
research and 10 were reviews (see Supplementary Information for
search details).

Fig. 1 The transparency and interpretability for understandable models (TIFU). The TIFU framework operationalises “explainability” by
focusing on how a model can be made understandable (to a user) as a function of transparency and interpretability (both definitions are
elaborated in the main text). Algorithms and models will differentially satisfy these requirements and we show the example of logistic
regression (in green, at the top of the diagram) as exemplifying a transparent and interpretable model.
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In Table 1, we summarise the 15 original research articles,
grouped by the application (predominantly, in neuroimaging and
survey data). Notably, in neuroimaging applications, where deep
learning methods were most used, we found that the definition of
explainability almost always defers to the XAI method or
technique used (which were most often feature importance
methods e.g. Shapley13 and LIME14). Occasionally15,16, methods
with explainability or interpretability “by design”2 were used; these
papers both used regression-based methods. Further, only three
papers17–19 evaluated their proposed explainable AI with respect
to how humans might make use of the explanations—arguably,
an essential ground-truth for a successful XAI implementations.
The situation was notably different in studies making use of survey
data where evaluation of how humans might understand the AI’s
inferences, discoveries or predictions were more common as were
studies that attempted a more explicit definition of what they
intended “explainability” to mean and the same studies were less
likely to simply defer to the methods used.
The uses of AI were most often a combination of prediction and

discovery (8 of the 15 studies); by this, we mean that while e.g.
classifiers were built to discriminate between patients and controls
(with the intent of making predictions for new patients), often,
the trained models were then dissected to provide insights on the
high-dimensional multivariate input data—similarly to how
inferential methods are used in classical statistical analyses. This
may signal that when researchers are faced with multivariate
data but an absence of clear a priori knowledge about the
application that would assist engineering a solution, the flexibility
of supervised learning delivers automated feature selection. It is
no surprise that this approach was prevalent in neuroimaging
studies, where the use of deep learning (especially, image
processing architectures) is notable for studies which report a
combination of prediction and discovery.
Finally, we note that when an array of ML methods were used

(e.g. testing and then selecting a best-performing classifier in

either neuroimaging or survey data), with one exception20, there
was no definition of what explainability meant and the authors
deferred to the XAI method used. Thematically, almost all original
research papers follow a pattern of describing why XAI is
important, usually presenting a prima facie argument (e.g. that
human operators need to be able to understand what the AI is
delivering) with few explicitly addressing a definition with respect
to the application domain or methods used. More often, rather
than being explicitly defined—or addressing how the research
delivers explainability—papers defer to methods (most com-
monly, feature importance) or assume XAI is conventional wisdom.

A FRAMEWORK FOR UNDERSTANDABLE AI/ML IN MENTAL
HEALTH APPLICATIONS
Given the diversity of definitions of “explainability” we now
describe a framework for “understandable AI/ML” for mental
health research that centers transparency and interpretability—
both concepts which possess more consistent meanings in the
literature—and recalling our earlier definition, we propose under-
standability as the most concrete approximation21 to the multi-
farious definitions and uses of the term “explainability”. To do this,
we anchor our definitions to models that have intrinsic interpret-
ability or are understandable by design (i.e. linear statistical
models). A tutorial example (comparing a fully understandable
linear model to an opaque neural network model) is given in
Supplementary Information.
In Fig. 1, we show the TIFU framework. An AI/ML algorithm

takes some input and performs operations to derive a feature
space which is the basis for downstream computations that
implement the desired functionality e.g. classification, regression,
function approximation, etc. The derived feature space is usually
optimised to ensure the downstream task is tractable. If we
denote the output of a model y, the multivariate input x and f(x)
being some function mapping from inputs to the feature space

Table 1. Original research reporting applications of explainable AI in mental health.

Citation Application Methods XAI methods Define Evaluate Defers to method

Neuroimaging/EEG

Chang et al., 202046 P, D DL FI No No Yes

Supekar et al.,
2022a17

P, D DL FI No Partial Yes

Supekar et al.,
2022b18

P, D DL FI No Partial Yes

Kalmady et al., 202115 P, D DL, ER Des, FI Yes No Yes

Bučková et al., 202016 P R Des Partial No Yes

Ben-Zion et al., 202247 D R FI No No Yes

Al Zoubi et al., 202119 P DL, R, SVM, RF, NB, XG FI No Partial Yes

Smucny et al., 202148 P DL, MLP, SVM, RF, NB, K*, DT, AB FI No No Yes

Survey

Mishra et al., 202149 P, D DT FI, CI Yes Yes No

Ammar et al., 202029 DM KG Pr Yes Yes No

Schaik et al., 201950 P, D R, DR Des Partial No No

Jha et al., 202131 P, D R, SVM, RF, NB, BN Des, Pr No Yes Yes

Byeon, 202120 P, D SVM, RF, XG, AB, LGB Pr, FI Partial Yes Yes

Ntakolia et al., 202243 P R, SVM, RF, XG, kNN, DT, MLP FI No Yes No

Physiological

Jaber et al., 202230 P RF Pr, FI Yes Yes No

Application: P prediction, D discovery, DM decision making; Methods: DL deep learning, ER ensemble of regressions, R regression, SVM support vector machine,
RF random forest, NB Naive Bayes, XG XGBoost, MLP multilayer perceptron, K* K-star instance-based classifier, DT decision trees, AB AdaBoost, KG knowledge
graph, LGB light gradient boost, kNN k-nearest neighbour; XAI Methods: FI feature importance, Des by design, CI causal inference, Pr presentation.
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(which may be a composition of many functions) and g(f(x)) be the
downstream process (that operates on the feature space and may
also be a non-trivial composition of functions) then:
Definition (Transparency). The inputs x and feature space f(x) of

a model should either

(a) stand in close correspondence to how humans understand
the same inputs or,

(b) relationships between inputs (and their representation in
features space) should afford an interpretation that is
clinically meaningful

For example, if the inputs to a model are Age and performance
on some cognitive task, TestScore, then the model is feature
transparent if:

● trivially, the feature space is identical to the inputs, f(x)≡ x,
● the feature space can be described e.g. as an explicit function

of the inputs f(x)= Age+ TestScore2—in this example, the
function may represent feature engineering that includes
human-expert domain knowledge relevant to the application,

● the feature space can be represented to a human operator
such that differences and similarities between exemplars (i.e.
two different patients) preserves or affords a clinical meaning
e.g. exemplars with similar TestScore values aggregate
together even if they differ in Age. In this example, let f(x1)
represent an individual with a low TestScore and younger Age
(a clinical group representing premature onset of a cognitive
disorder) and f(x2) represent an individual with a low TestScore
and higher Age (representing another clinical group)—if f(⋅) is
a non-trivial function, we need to provide a mechanism that
exposes why x1 and x2 are represented differently/similarly
under f(⋅) consistent with a human expert’s differentiation of
the two cases; an obvious method being distance-preserving
mappings for unsupervised algorithms or conformity mea-
sures for e.g. supervised classification with deep learning22.

We need not commit to any one way of defining “relationships”
between inputs—they could be probabilistic (different exemplars
have similar probabilities of membership to components of a
mixture model of the feature space), geometric (distances on some
manifold representation) or topological (such as nearest-neighbour
sets). It matters only that the feature space is represented in a way
that aligns with the clinical problem/population (see for example,
Supplementary Information Figure 2).
Definition (Intepretable). For a model to be interpretable—akin

to the concept of algorithmic transparency21—we require one or
more of the following:

(a) The function (computational processes) of g(⋅) can be
articulated so the outputs can be understood as transforma-
tions of the inputs.

(b) The structure (parameterisation) of g(⋅) can be described
and affords a clinical interpretation.

(c) The presentation of g(⋅) allows for a human operator to
explore qualitative relationships between inputs and out-
puts (i.e. the behaviour of the model).

Clearly, criteria (a) will be difficult to achieve in all but the
simplest cases (e.g. primitive arithmetic operations) and similarly,
criteria (b) will be difficult to achieve for methods lacking the
theoretical underpinning of e.g. linear statistical models. Conse-
quently, criteria (c) is likely to be leveraged in many applications
where g(⋅) is some non-trivial function of it’s inputs.
For example, logistic regression admits all three of the

desiderata for interpretability as follows:

(a) The computational processes (function) are: first compute
a weighted sum of the inputs f(x)= x⊺β e.g. representing
the log odds of x being a positive case on the logit
scale; then compute a “link” function that converts

the unbounded weighted sum into a probability
gðf ðxÞÞ ¼ 1=ð1þ expð�f ðxÞÞÞ.

(b) The parameterisation (structure) β affords a direct inter-
pretation as odds ratios for each of the inputs xi∈ x with
respect to the output.

(c) The presentation is straight-forwardly that Pr(y= 1∣x)=
g(f(x))—although we might consider a format established
to be more compatible with clinician reasoning, e.g. natural
frequencies instead of probability statements23,24.

The obvious stress-test for our definition of transparency
and interpretability (to deliver an understandable model) are
applications of deep learning. For example, in ref. 15, the authors
use convolutional networks to pre-process resting state fMRI
data and then downstream, classify cases into those likely to
have obsessive compulsive disorder. Their modelling uses three
different architectures; two that operate on the fMRI data
directly (where f(⋅) is composed of two layers of convolution,
followed by max pooling and a linear output layer that
implements supervised feature selection) and another where
previously engineered, anatomically-parcellated classifiers pro-
vide a feature representation. The two architectures that make
use of convolutional layers (at least, as they are presented15) do
not meet the criteria for transparency or intepretability.
However, the third model (parcellation-based features) does
meet the transparency criteria because for an individual patient,
each anatomical-parcellation classifier delivers a feature value
proportional to that brain region’s probability of being
‘pathological’ (e.g. being similar or different to the prototype
for a disorder or healthy patient). Further, for the interpretability
criteria, we conclude that as presented, although the upstream
parcellation system meets criteria (a) and (b) overall, the results
as presented in ref. 15 marry with the presentation criteria (c).

PRESENTATION AND CLINICAL REASONING
In our definition of understandability (as transparency and
interpretability) we rely heavily on a human operator being able
to relate the behaviour of algorithms (and their inputs) to their
everyday professional expertise. Our inclusion of “presentation”
as a third component of interpretability is because we expect a
model’s operation will be too complex. To this end, consistent
with others21, we add that the model must present input/output
relationships aligned with the cognitive strategies that clinicians
use. We focus on abductive and inductive (in contrast to
deductive) inference as the most applicable framework25–28.
Some of the literature surveyed leverages user interface design
to present the outputs of complex models a way familiar to
clinicians16,20,29–31. Even for generalised linear models, clinicians
may struggle to directly interrogate the structure (parameterisa-
tion) and function (computations) but of course, have recourse
to interpretability afforded by the structure of these models
(criteria b).
Interactive visualisation may allow clinicians to “probe” the

model for changes in the probability of an outcome (e.g. a
diagnosis) by manipulating the input features (such as presence/
absence of symptoms) and this assists users to develop a
qualitative understanding of the relationship between inputs/
outputs. By analogy, nomograms32 allow a user to visually
compute the output of complex mathematical functions without
access to explicit knowledge of the required operations (i.e. the
function/computational processes). In the deep learning litera-
ture33, a similar idea estimates the change in a classifier’s output
i.e, the change in g(f(x))) for systematic changes in the input (x)34

and similar perturbation techniques35 can be applied to compo-
nents of models (i.e. to f and g seperately, or if g is a non-trivial
composition of functions). However, the focus of these predomi-
nantly engineering solutions is on image processing systems and
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there is a dearth of literature that explores the specific context of
clinical reasoning e.g. how an AI might assist with diagnosis
outside of the narrower but familiar domain of imaging.
The requirements for presentation will need alignment with the

different use-cases for AI. With respect to the “Application” column
of Table 1: for discovery applications of AI, inductive reasoning
allows us to use statistical or probabilistic information to general-
ise from examples; in Fig. 2, if we know that 80% of people with
psychosis (an hypothesis or diagnosis, D) have abnormal beliefs
(evidence, or signs/symptoms S) then induction allows us to make
generalisations about individuals with D given what we know
about the relationship with S, or symbolically, D→ S. Presentation
as induction would be useful when dissecting disorder sub-types36

and neuroscientific discovery37 where dimensionality reduction
and unsupervised clustering methods would align with an
inductive presentation.
More relevant to decision making and prediction applications is

abductive reasoning; the process of inferring which hypotheses
are best supported given some evidence—for example, in
diagnostic reasoning, we can consider evidence (as signs/
symptoms, S) and hypotheses as a number of candidate diagnoses
D1, D2,…Dn. We aim to infer which Di best accounts for the
evidence S and this is compatible with conditional probability and
Bayes theorem; that is, we seek Pr(Di∣S)∝ Pr(S∣Di) ⋅ Pr(Di). In
contrast to induction, we are inferring S→ D. Inductive inference
differs from deductive inference because although the “direction”
is D→ S in deductive inference, the truth of D and S are absolute;
for example, in Fig. 2, deductive inference would assert that it is
necessarily true that if a person has psychosis, they definitely have
abnormal beliefs (cf. the probabilistic interpretation afforded by
inductive reasoning). To re-use the example of making a diagnosis,
it is clear that psychiatric diagnoses have “many-to-many”
mappings with the underlying biology38–40, the probabilistic
nature of psychiatric diagnosis (i.e. the mapping of signs/
symptoms to diagnoses) has long been recognised41 and
consequently, influenced the dimensional characterisation of

disorders42. Here, we suggest that an abductive presentation
would be most suitable.

CONCLUSION AND RECOMMENDATIONS
We now describe the implications of both our survey of the
literature on XAI in mental health and the proposed TIFU
framework. Firstly, we note that the application of XAI in mental
health were broadly prediction, discovery or a combination of the
two. Second, we require understandability because clinical
applications are high-stakes. Third, we expect that when we
deploy AI tools, they should assist clinicians and not introduce
further complexity. In our review of recent literature on the topic
of explainable AI in mental health applications, we note that in 8
of 15 original research papers, prediction and discovery are
considered together—using our framework, this would require
separate consideration of the TIFU components with respect to
each task (prediction and discovery) separately.
Our first recommendation is driven by the diversity of AI/ML

techniques deployed in applications on clinical survey data e.g.,
refs. 20,31,43—which here, means voluminous, tabulated data with
high numbers of input (independent) variables and where there
is no a priori data generating model or domain knowledge which
enables human-expert feature selection/engineering. These
applications were characterised by (a) the use of multiple AI/ML
methods and their comparison to find the “best” model and (b)
post hoc interrogation of the model (e.g. by feature importance
methods) to provide a parsimonious summary of those
features for the best performing model. The AI/ML methods are
essentially being used to automate the exploration of data for
signals that associate with an outcome of interest while
simultaneously, delivering a functioning classifier that could be
deployed to assist clinicians.

● Recommendation One: When multiple AI/ML techniques (that
are not transparent and interpretable) are used to discover
which inputs are features reliably associated with an output
of interest, the “discovered” feature/output associations

Fig. 2 Examples of inductive and abductive inference. Using the example of making diagnoses, the left panel shows an inductive inference
using a statistical syllogism—a probable conclusion for an individual (in the example given, the probability an individual will experience abnormal
belief symptoms, given they have a diagnosis of a psychotic disorder) is obtained by generalising from available data (i.e. the contingency table
showing the proportions of patients with psychosis who have abnormal beliefs). In the right panel, abductive inference affords computing the
best or most plausible explanation (i.e. a diagnosis of psychosis or depression) for a given observation (that a person has abnormal beliefs) using
the available data (a contingency table for two diagnoses).
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should be then be tested by post hoc constructing a
transparent and interpretable model which uses only those
discovered features.

In essence, we are suggesting that the wholesale application of
AI/ML methods should be seen as exploratory analyses, to be
followed by constructing a transparent and interpretable model.
For example, in ref. 43 the best performing classification method
was shown to be XGBoost and post hoc analyses with SHAP values
identifies a subset of inputs which have most utility as features for
classifying whether an individual was likely to experience a
change in mood state during the Covid pandemic lockdown. Our
recommendation would mean constructing a model with the
discovered features—clearly identifying the mapping from inputs
to features—examining it’s performance and ensuring that the
criteria for interpretability are met. A counter argument would be
that this leads to circular analyses—or “double dipping” the data
—leading to sampling bias in the interpretable model. This may
be true, but it is a limitation of the approach in general because if
the discovered features migrated into the interpretable model are
robust, the understandable model should still perform when
prospectively evaluated in another validation sample. This latter
step then ensures that the model is valid, reliable and under-
standable which can only provide reassurance to clinicians using
the system when it is deployed. This recommendation is similar to
“knowledge distillation”44 and methods have developed whole-
sale for extracting decision trees from deep learning models45.
Our next recommendation is driven by the observation (see

Table 1) that deep multi-layer networks were used to implement
classification as a downstream task and, essentially, supervised
learning of a feature space representation for very-high dimen-
sional inputs. In these cases, we can identify a partition between
the upstream component that performs feature representation f(⋅)
and the downstream task g(⋅).

● Recommendation Two: When using high-volume, high-
dimensional (multivariate) data, without a priori domain-
specific constraints and instead, we wish to automate
reducing the data to feature representations f essential for a
downstream task g: when the methods used to implement f
are neither transparent (data, features) or admit interpret-
ability (function, structure) they should be engineered and
then deployed as a separate component for use in inter-
pretable methods for the downstream task g.

Essentially, we are recommending that when we rely on opaque
models for processing high-volume/dimensional data, they should
be treated as a pre-processing ‘module’ and the downstream task
g that depends on the feature representation should be
implemented using models that meet interpretability criteria. As
an example, the anatomical parcellation model developed for
identifying people with OCD15 exemplifies this. Our recommenda-
tion would be that instead of using subsequent multiple layer
networks for classifying OCD, a simpler interpretable model
should be preferred because; then, the outputs of each
anatomically-parcellated pre-processing ‘modules’ are transparent
and the downstream classification task would be interpretable.
A counter argument might be that the upstream feature

representation might not be compact enough, or, that the multiple
layers in the downstream classifier are required to flexibly aggregate
the feature representation for g; if this is the case, then the model
will necessarily remain opaque, lack understandability and may well
be vulnerable to over-fitting both f and g and therefore, unlikely to
be useful in high-stakes applications.
We have consistently described AI/ML models as being composed

of an “upstream” component that delivers a feature representation,
f(⋅), coupled to another “downstream” process, g(⋅), that uses the
feature representations to perform e.g. prediction, discrimination/
classification and so on. This may not be appropriate to all AI/ML

methods—however, from our review of current XAI in mental health
and psychiatry, this is how AI/ML methods are being used.
Our proposed TIFU framework simultaneously lowers our

ambitions for what “explainability” is while emphasising and
making concrete a definition that centers (a) computational
processes and structures, (b) the presentation of outputs and (c)
the way that data or inputs relate to the clinical domain. Our
approach draws on principles in the general XAI literature—
notably, ref. 2 and ref. 21—extending these principles to specific
considerations for psychiatry and mental health including
inductive and abductive inference and the differing nature of
understandability for prediction, discovery and decision-making
applications. To conclude, our ambition for the TIFU framework is
to improve the consistency and specificity of what we mean when
we allude to “explainability” in research involving AI and ML for
mental health applications.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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