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Highlights: 

• We investigate different decoding paradigms applied to epoched data and 

characterise the information content available to each over time. 15 

• Under commonly used instantaneous signal decoding paradigms, sinusoidal 

components of the evoked response are translated to double their original 

frequency in decoding accuracy metrics, presenting technical and interpretational 

challenges. 

• When instantaneous signal decoding is used, we recommend using low pass filters 20 

with a cut-off less than one quarter of the sampling rate to eliminate spurious 

representational alias artefacts.  

• The interpretational issues associated with instantaneous signal decoding can be 

resolved with alternative paradigms such as complex spectrum decoding. 

• We show that complex spectrum decoding results in decoding accuracy metrics that 25 

are higher, more stable over time, and free of representational aliasing. 

 

Abstract: 

 

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is 30 

increasingly used to test theories about how the brain processes information. However, a 

fundamental relationship between the frequency spectra of the neural signal and the 

subsequent decoding accuracy timecourse is not widely recognised. We show that, in 

commonly used instantaneous signal decoding paradigms, each sinusoidal component of 

the evoked response is translated to double its original frequency in the subsequent 35 

decoding accuracy timecourses. We therefore recommend, where researchers use 

instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied 

with a cut-off at one quarter of the sampling rate, to eliminate representational alias 

artefacts. However, this does not negate the accompanying interpretational challenges. We 

show that these can be resolved by decoding paradigms that utilise both a signal’s 40 

instantaneous magnitude and its local gradient information as features for decoding. On a 

publicly available MEG dataset, this results in decoding accuracy metrics that are higher, 

more stable over time, and free of the technical and interpretational challenges previously 
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characterised. We anticipate that a broader awareness of these fundamental relationships 

will enable stronger interpretations of decoding results by linking them more clearly to the 45 

underlying signal characteristics that drive them. 

 

INTRODUCTION 

 

The field of representational dynamics uses temporal patterns in decoding accuracy 50 

timecourses to test hypotheses about how the brain processes information (T. Carlson et al., 

2013; Cichy et al., 2014; Kietzmann et al., 2019; King & Dehaene, 2014). By decoding 

different experimental stimuli from recorded brain activity at high temporal resolution, 

researchers use information theoretic measures to quantify what features of a stimulus are 

explicitly represented in neural data as a function of time from stimulus onset (T. A. Carlson 55 

et al., 2011; Cichy et al., 2016; Ince et al., 2017). An emerging question in neuroscience is 

how these representational dynamics relate to the brain’s underlying neurophysiology 

(Gross et al., 2013; Jafarpoura et al., 2013; Kriegeskorte & Kievit, 2013; Schyns et al., 2011). 

Such analyses seek to go beyond merely answering what is represented in recorded brain 

activity, by also characterising the neural mechanisms explaining how that information is 60 

represented (Higgins, Vidaurre, et al., 2021; Kikumoto & Mayr, 2018; Valentin et al., 2020; 

van de Nieuwenhuijzen et al., 2013; Zhan et al., 2019).  

 

This commonly involves a decoding paradigm we will refer to as instantaneous signal 

decoding, where classifiers are trained and tested on the raw broadband signal recorded 65 

over all sensors at each timepoint following a stimulus (T. Carlson et al., 2013; Cichy & 

Pantazis, 2017; Grootswagers et al., 2017), and the representational dynamics interpreted 

(often with reference to activity in canonical frequency bands). This can be used for example 

to study the phase-locking of information content to canonical oscillations (Kerrén et al., 

2018; Kunz et al., 2019; van Es et al., 2020), the dynamics of memory (Higgins, Liu, et al., 70 

2021; LaRocque et al., 2013; Wolff et al., 2015), or the direction of information flow (Cichy 

et al., 2014; Dijkstra et al., 2020; Goddard et al., 2016; Linde-Domingo et al., 2019). A closely 

related paradigm, we will refer to as narrowband signal decoding, applies the same 

procedure after filtering the data into a narrowband of interest. This explicitly links 

observed patterns with canonical frequency bands (Samaha et al., 2016; Xie et al., 2020). 75 
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Unfortunately, however, the fundamental relationship between the frequency content of 

the stimulus evoked signal and the inferred information content is not widely recognised. 

Whilst many decoding approaches aim to be agnostic about the specific data characteristics 

over time that drive their results, there is a considerable risk of misinterpretation when this 80 

relationship is not considered. In this paper we draw attention to this relationship, 

highlighting that the spectral content of the evoked response is translated to double its 

original frequency in associated decoding accuracy metrics when using the instantaneous 

signal decoding or narrowband signal decoding paradigms most typically used in the 

literature (T. Carlson et al., 2013; Cichy & Pantazis, 2017; Grootswagers et al., 2017). From 85 

this, we identify two problems: the first is the presence of artefacts due to representational 

aliasing; the second is the broader challenge of how we should interpret information 

theoretic metrics that systematically oscillate at double the frequency of the evoked 

response spectrum.  

 90 

We argue that these problems arise from a narrow focus on information content in the 

instantaneous signal at a single moment in time, which ignores information stored in the 

signal’s gradient or higher moments. Conceptually, this is analogous to analysing a simple 

pendulum by measuring only its displacement at a single instant in time – not its velocity or 

acceleration, which would together fully define the dynamic system. As illustrated in figure 95 

1, such a narrow focus only on the pendulum’s displacement leads to inferred information 

content that peaks at the pendulum’s extrema (i.e. the peaks and troughs of the oscillation); 

taking a broader view of the information contained in both the displacement and velocity 

leads to a measure of information content that is stable over time.  

 100 

We extend the same logic to the dynamic trajectory of neural activity evoked by a stimulus. 

This motivates a third decoding paradigm that we refer to as complex spectrum decoding, 

which is one way of including such temporal gradient information. Returning to our example 

above, if we applied a Fourier decomposition to the pendulum’s displacement over time, we 

would obtain a single complex frequency component with a real part (tracking the 105 

displacement) and an imaginary part (tracking the velocity). This concept generalises to 

neural activity, where we would expect more complex Fourier dynamics played out 
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simultaneously over multiple frequency bands and spatial channels. When this complex 

spectrum information is included as features to a classifier, we show that this results in 

inferred representational dynamic patterns that have higher accuracy, are more stable over 110 

time, and which we believe to provide a better characterisation of the brain’s 

representational architecture. 

 
Figure 1: a pendulum analogy for decoding oscillatory neural signals.  A. Commonly used 

instantaneous signal decoding pipelines can only offer a partial view of the brain’s 115 

representational dynamics, as they only use the instantaneous data values and cannot 

detect information stored in the gradient or higher moments of the dynamic signal 

trajectory. When dealing with a dynamical system such as the brain, this is like trying to 

predict the behaviour of a pendulum given only its displacement at a single instant in time – 

not its velocity or momentum, which would fully characterise the dynamic system. B. 120 

Suppose we wish to classify if a pendulum is moving or stationary given noisy estimates of 

its displacement and velocity over time. The information content associated with only the 

displacement readout peaks at the pendulum’s extrema and drops to zero in between. 

Including the velocity information instead achieves stable information content over time. C. 

Evoked neural data with strong oscillatory components behaves in the same way as the 125 

pendulum. When researchers apply instantaneous signal decoding to such data, classifiers 

should perform well at the peaks and troughs of sinusoidal components in the evoked 

response, and poorly in between. This problem would be overcome if the local gradient 

information was included as features for classification, resulting in information content 

metrics that are stable over time. 130 
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RESULTS 

 

1. How the spectrum of the evoked response determines the signal information content  

 135 

We first ask: what is the fundamental relationship between frequency-specific features 

of the stimulus-evoked response and the resulting timecourse of decoding accuracy? We 

address this question using a generative modelling approach, where we model the 

neural data recorded on individual trials as a Fourier series with bandlimited Gaussian 

noise. From a probabilistic modelling perspective, the mutual information is the 140 

theoretical quantity analogous to decoding accuracy that we can then derive. This allows 

us to characterise how the information content of a signal varies as a function of time 

and frequency. 

 

Random 

Variable 

Observation 

on nth trial 

Domain and 

dimension 

Used to model: 

𝑋" 𝑥$," ℝ'×) Recorded broadband signal at time t; input used for 

instantaneous signal decoding 

𝑌 𝑦$ {1, −1} Stimulus class 

𝑍",1 𝑧$,",1  ℝ'×) Narrowband signal at time 𝑡 in frequency band 𝜔; 

input used for narrowband signal decoding 

𝑊",1  𝑤$,",1 ℂ'×) Complex spectrum signal at time 𝑡 in frequency 

band 𝜔; input used for complex spectrum decoding 

Table 1: Overview of random variables modelled in this paper. 145 

 

1.1. Generative model of stimulus evoked responses 

 

We wish to model epoched electrophysiological data recorded from 𝑃 channels 

under two different experimental conditions. Let us denote by 𝑥$,"  the [𝑃	 × 1] 150 

vector of data recorded at time 𝑡 ∈ {1,2,…𝑇} on trial 𝑛 ∈ {1,2,…𝑁}, where 𝑦$ ∈

{1, −1} denotes the experimental condition for that trial. We model 𝑥$,"  as 

comprising a condition-independent evoked response term 𝜇"  of dimension 
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[𝑃	 × 1], and residual terms that are decomposed into a sum of [𝑃	 × 1] Fourier 

components 𝑧$,",1: 155 

 

𝑥$," = 𝜇" + E 𝑧$,",1

F

1GH

 

Equation 1 

We henceforth refer to 𝑥$,"  as the ‘broadband signal’, and the multiple 𝑧$,",1  terms 

as the ‘narrowband signals’. If we assume each narrowband signal 𝑧$,",1 has a 160 

multivariate Gaussian distribution with mean conditioned on the stimulus (see 

Methods for full details), we obtain the following expression for the distribution of 

the broadband signal: 

 

𝑃(𝑋"|𝑌)~𝑁(𝜇" + 𝑌E 𝐴1 cos(𝜔𝑡 + 𝜙1)
F

1GH

, E ΣS

F

1GH

) 165 

Equation 2 

Each 𝐴1 term is a diagonal [𝑃	 × 𝑃] matrix, where the 𝑖th diagonal entry, denoted 

by 𝑎1,V, reflects the magnitude of the component at frequency 𝜔 on channel 𝑖. Both 

𝜔 and 𝑡 are scalar indices reflecting the frequency and time respectively; 𝜙1  is a 

[𝑃	 × 1] vector, each entry of which contains the phase offset of the oscillation at 170 

frequency 𝜔 across the 𝑃 channels. Finally, we model induced effects (i.e. 

narrowband power that is not phase aligned to the stimulus) independently in each 

frequency band, where Σ1  is the [𝑃 × 𝑃] covariance matrix modelling the spatial 

variance and correlations expressed at frequency band 𝜔. Note that this 

corresponds to an assumption that only the evoked response, not the induced 175 

response, differs over the two conditions – this is a simplifying assumption that we 

later relax in Results Section 1.4. 

 

We can now characterise the mutual information between the broadband signal 𝑋"  

or its constituent narrowband signals 𝑍",1and the class labels 𝑌. 180 
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1.2. Information content available to narrowband signal decoding 

 

We wish to explore how the spectrum of the evoked response determines the 

representational dynamics inferred from the decoding paradigms that are most 185 

typically used in the literature (T. Carlson et al., 2013; Cichy & Pantazis, 2017; 

Grootswagers et al., 2017).  We start by considering instantaneous decoding of 

narrowband signals 𝑍",1, which we refer to as narrowband signal decoding. 

 

Given a probabilistic model, we can calculate the mutual information 𝐼(𝑍",1, 𝑌), 190 

which expresses the amount of information shared between the signal and the 

condition label time courses. This measure of information content in the signal that 

pertains to the condition labels can be thought of as a surrogate measure of 

decoding accuracy were one to do narrowband signal decoding. Starting with a 

single Fourier component of the evoked response at frequency 𝜔, the mutual 195 

information is itself a sinusoidal function that has been translated to double the 

original frequency, 2𝜔: 

 

𝐼X𝑍",1, 𝑌Y = 𝑓X𝑐1 + rScos(2𝜔𝑡 + 𝜉1)Y 

Equation 3 200 

Where f is a monotonic, concave function (see Appendix B for proof and Figure A1 

for plot of the function); and 𝑐1, rS and 𝜉1  are all scalar values that are constant 

with respect to time (see Appendix C for their exact values, and Appendix A and C 

for proof of the above result). The intuition for this is based on what was discussed 

in Figure 1: if 𝑍",1  were the displacement of a pendulum oscillating at frequency 𝜔, 205 

a decoder will perform best at the peaks and troughs of that oscillation and poorly 

in between these points. 

 

We illustrate this relationship in example 1 (Figure 2), where we simulate an evoked 

response under two conditions. Suppose that one condition (in blue) contains 210 

information content at 10Hz across both channels, and the second condition (in 

black) does not. The information content associated with this narrowband 

component is itself a sinusoidal function oscillating at 20Hz. 
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1.3. Information content available to instantaneous signal decoding 215 

 

Realistic neural signals are not expressed in a single component frequency across all 

spatial areas, but are rather comprised of a number of spatially distinct components 

at multiple frequencies. How then does the entire frequency spectrum of the 

evoked response determine the frequency spectrum of the associated information 220 

content? This equates to the paradigm of instantaneous signal decoding that is 

most widely performed in the literature (T. Carlson et al., 2013; Cichy & Pantazis, 

2017; Grootswagers et al., 2017). For the broadband signal 𝑋" given in our model, 

the information content is given by: 

 225 

𝐼(𝑋", 𝑌) = 𝑓 ^𝑐_ +E𝑟_,1	cosX2𝜔𝑡 + 𝜉_,1Y + h(t)
F

1

c 

Equation 4 

Where 𝑐_, 𝑟_,1  and 𝜉_,1 are scalar values that are constant over time, and h(t) 

refers to additional sinusoidal harmonics distributed across the frequency spectrum 

between zero and 2Ω (see Appendix D for their exact values along with proof of this 230 

result).  

 

Importantly, if the highest frequency component of the evoked response on any 

channel is Ω, it follows that the highest frequency in the associated information 

spectrum will be 2Ω. We illustrate this point with example 2 in Figure 2; for 235 

simplicity we simulate an evoked response comprising just 2 spectral components 

under each condition at 10Hz and 15Hz; the associated information content displays 

multiple peaks over time, represented in its Fourier spectrum by frequency 

components distributed between 0Hz and 30Hz. As we will explore further in 

Results Section 2.1, this also means that commonly used anti-aliasing filters are 240 

insufficient to stop representational aliasing, i.e. alias artefacts in the inferred 

information content dynamics. 
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Figure 2: How the stimulus evoked spectrum determines the spectrum of information 

content when instantaneous signal decoding is used. In example 1 on the left, we simulate 245 

two conditions across two channels, with the upper panel showing the two conditions’ trial-

averaged evoked responses (one in blue and one in black). The first condition evokes a 

phase-locked 10Hz oscillation on both channels, the second condition is a null condition in 

which there is no evoked response. The information content (i.e. the mutual information 

𝐼(𝑋", 𝑌) between the broadband data 𝑋"  and the stimulus labels 𝑌) is plotted in the lower 250 

panel, and can be thought of as a surrogate measure of decoding accuracy were one to do 

instantaneous signal decoding. Although the only oscillation in the evoked response is at 

10Hz, the information content is a 20Hz sinusoidal signal, reaching maxima at each peak and 

trough of the evoked response. In example 2 on the right, we simulate a signal comprised of 

2 Fourier components at 10Hz and 15Hz in both conditions, with slightly different 255 

amplitudes. The associated information content is a signal with three distinct peaks, with 

Fourier components at 20Hz and 30Hz and additional harmonics at 5Hz and 25Hz.  
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1.4. Modelling induced effects  

 260 

It is important to consider the degree to which these findings are specific to our 

chosen modelling assumptions. We have specifically limited our discussion to that 

of evoked effects by assuming the noise distribution was invariant over conditions. 

In the frequency domain, this means that we have limited our analysis to the part of 

the signal that is phase aligned to stimulus onset. When we introduce condition-265 

specific induced effects – i.e. to model the case where one condition induces an 

increase in bandlimited power that has random phase alignment with the stimulus 

onset – we can no longer derive an exact analytic expression for the mutual 

information; however, we can derive an upper bound on the information content. 

This upper bound is a function of components at the same frequencies specified in 270 

equations 3 (for the narrowband case; see Appendix F and G for proof) and 5 (for 

the instantaneous signal case; see Appendix H for proof). This result is not 

mathematically trivial, but may nonetheless be intuitive to some readers on the 

basis that the information content of a signal containing both evoked and induced 

effects must be less than the combined information content of each of those effects 275 

assessed independently; and the information content of induced effects assessed 

independently is constant with respect to time (owing to the uniform phase 

distribution that defines induced effects). Thus, we are able to generalise our 

findings to the case where induced effects are present. 

 280 

2. Technical and Interpretational issues raised  

 

The relationship we have characterised above between the stimulus-evoked signal 

spectrum and the spectrum of the information content raises several issues with 

commonly used instantaneous signal decoding pipelines. On a technical level, there is a 285 

risk of high frequency artefacts which we refer to as representational aliasing. On a 

broader level, this raises questions about how certain features of decoding accuracy 

timecourses should be interpreted. 

 

 290 
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2.1. Representational Aliasing  

 

The Nyquist frequency defines the highest frequency component that can be 

correctly resolved from data that has been digitally sampled at a specified sampling 

rate. It is standard practice to apply a low pass anti-aliasing filter prior to sampling 295 

which ensures no signal components are above the Nyquist frequency and that all 

signal components can therefore be correctly resolved. However, this only applies 

to the signal components, not their associated information spectrum, which we 

have shown contains spectral contents at double the highest frequency of the signal 

spectrum.  300 

 

It follows that representational aliasing artefacts will be present in instantaneous 

signal decoding accuracy metric unless the following condition is met:  

 

Ff ≥ 4Ω	 305 
Equation 5 

Where Ω is the highest frequency component of the evoked response and 𝐹j is the 

sampling rate. Thus, instantaneous signal decoding pipelines need to use low pass 

filters with cut-off no higher than one quarter of the sampling rate – before training  

classifiers – in order to eliminate representational aliasing effects. Figure 3 310 

illustrates this graphically. 
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Figure 3: Demonstration of representational aliasing associated with instantaneous signal 

decoding. Consider the information content associated with example 1 from Figure 2, where 315 

one condition was associated with a stimulus-evoked component at 10Hz. As Figure 2 

shows, the single oscillatory mode at 10	𝐻𝑧 is associated with a true information content 

that oscillates at a frequency of 20 Hz (plotted in blue above). In the first case on the top 

row, given a sampling rate of  160	𝐻𝑧 > 4	Ω, the recovered representational dynamics 

(plotted with black dashed line showing sinusoidal interpolation between the discrete 320 

samples) match the true frequency. In the second case however, given an inadequate 

sampling rate of 30	𝐻𝑧 < 4	Ω, the recovered dynamics are subject to representational 

aliasing, resulting in spurious dynamics at 10Hz rather than the true 20Hz pattern. 

 

2.2. How should we interpret oscillatory information content? 325 

 

The oscillatory nature of information content associated with sinusoidal 

components of the evoked response is, we argue, interpretationally problematic. 

Features resembling successive peaks in classification accuracy are quite commonly 

reported in the literature (T. Carlson et al., 2013; Gennari et al., 2021; Hogendoorn 330 

& Burkitt, 2018; Kurth-Nelson et al., 2015; Mohsenzadeh et al., 2018; Robinson et 

al., 2020), where they have occasionally been interpreted as evidence for complex 

underlying phenomena – for example, the activation of distinct feedforward vs 

feedback connections, or discrete and distinct stages of cognitive processing. As we 

have shown in Figure 2, successive peaks arise naturally from an evoked response 335 

containing sinusoidal components. We argue that a simpler explanation for their 

common appearance in the literature could merely be that the typical evoked 

response is characterised by a succession of peaks and troughs (e.g. the N70, P100 

and N175) that resemble a transient sinusoidal waveform.  

 340 

We believe a fuller picture of information content should include the information 

stored in the dynamic gradient of the signal that is not available using instantaneous 

signal decoding pipelines. In Results Section 3 we explore a third paradigm that 

includes such information, and show that this results in narrowband information 

content that is stable over time. However, as these methods will not always be 345 
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practical for reasons given in the discussion, we would more generally argue that 

representational dynamics obtained using instantaneous signal decoding and 

representing the ‘double peak’ feature shown in Figure 2 (and widely characterised 

in the literature) should first be assumed to correspond merely to peaks and 

troughs of an evoked sinusoidal signal, rather than more complex cognitive 350 

phenomena. 

 

3. Obtaining measures of sinusoidal information content that are stable over time 

 

We contend that the profile of information content obtained by instantaneous signal 355 

decoding is potentially misleading, as it suggests the brain’s representational dynamics 

are much faster than the actual evoked spectrum from which they are derived. Whilst 

instantaneous signal decoding pipelines are the most popular way to apply decoding to 

neural data at high temporal resolution, alternative methods exist that overcome these 

limitations. We focus our attention on Fourier analysis (for continuity with our modelling 360 

approach and because of these methods are well-established in neural data analysis), 

but emphasise these benefits are not specific to Fourier analysis per se – rather, they 

arise whenever methods include information in a dynamic signal’s higher moments (e.g. 

its gradient and rate of change) as features for classification. 

 365 

3.1. Complex Spectrum Decoding 

 

We previously characterised the information content between stimulus labels 𝑌 and 

the narrowband Fourier series components 𝑍",1. These narrowband components do 

not in fact include all the information that is returned by a Fourier signal 370 

decomposition; they reflect only the real component of a complex number 

representation. The imaginary components of these narrowband components reflect 

the instantaneous gradient information of each narrowband signal; we here 

characterise the information content associated with the full complex signal 

representation of each narrowband component, analogous to the decoding accuracy 375 

that would be obtained when both the narrowband signal and its local gradient are 

used as features for classification. 
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3.1.1. Real and complex components of a Fourier decomposition 

 380 

Fourier decompositions provide a complex representation of the underlying 

signal that includes both a real signal component and an orthogonal imaginary 

component, which we omitted from our model outline in Results Section 1 for 

simplicity. Including this complex-valued information, the same model can 

equivalently be written: 385 

 

𝑥$," = 𝜇" + E 𝑧$,",1

F

1GH

 

Equation 6 

𝑧$,",1 =
𝑤$,",1 + 𝑤$,",1∗

2  

Equation 7 390 

𝑤$,",1 = 𝑦$𝐴1𝑒V(1"stu) + ϵw,SeV1"  
Equation 8 

𝜖$,1 = 𝑁(0, Σ1) + 𝑖𝑁(0, Σ1) 
Equation 9 

Where 𝑤$,",1∗  denotes the complex conjugate of 𝑤$,",1. This is exactly equivalent to 395 

the model of Equation 2, however it includes the complex spectral representation 

𝑤$,",1  of each narrowband Fourier series component. It includes a condition-

dependent evoked term 𝑦$𝐴1𝑒V(1"stu) (i.e. the component of the response that is 

phase-locked to the stimulus), and a condition-independent residual term (i.e. the 

residual component with randomly drawn phase and amplitude on each trial; note 400 

that the values for the phase and amplitude are respectively the angle and 

magnitude of the complex valued 𝜖$,1  converted to polar coordinates). 
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Figure 4: Motivation for complex spectrum decoding. A. The signal modelled by 𝑤$,",1  can 405 

be visualised as a point rotating around a circle in the complex plane, with the two stimulus 

conditions shown in grey and blue corresponding to opposite sides of the circle. As the 

signal crosses the imaginary axis (i.e. as 𝜃 approaches {
|
), the separability of the two 

conditions in the real plane is minimised (corresponding to the troughs in the narrowband 

information content in Figure 2); however, at the same point, the two conditions in the 410 

complex plane (see the plane defined by 𝜃) are still highly separable. In fact, projecting onto 

the plane defined by the instantaneous phase 𝜃 results in information content that is stable 

over time and not varying with the phase of the oscillatory signal. B. The real part of the 

signal (i.e. 𝑧$,",1 = 𝑅𝑒(𝑤$,",1)) is a sinusoid as previously characterised. C. The 

corresponding narrowband mutual information (i.e. 𝐼(𝑍",1, 𝑌)) drops to zero in the 415 

sinusoidal troughs, whereas the complex spectrum information term (i.e. 𝐼X𝑊",1, 𝑌Y) is 

constant throughout. 
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3.1.2. Information content available to complex spectrum decoding 

 420 

An alternative to decoding on the raw signal at each point in time is to use both 

the real and imaginary parts of the complex-valued Fourier coefficients as 

features/inputs to a classifier. We will refer to this decoding paradigm as 

complex spectrum decoding. When all this information is included as features 

for classification, then the resulting information content in each frequency 425 

band is given by: 

 

𝐼X𝑊",1, 𝑌Y = 𝑓(2𝑐1) 
Equation 10 

Where 𝑐1 is the average value of the sinusoidal expression associated with the 430 

real information content in Equation 4 (see Appendix E for proof). Importantly, 

this expression is no longer sinusoidal; it is stable over time, and greater or 

equal to the peak information content that can be obtained using only the real 

spectrum (see Figure 4). Consequently, this overcomes both the problematic 

interpretational issues associated with instantaneous signal decoding discussed 435 

above, as well as the risk of representational aliasing that would otherwise 

require low-pass filtering with cut-off one quarter of the sampling rate. 

 

3.2. Practical considerations for non-stationary and non-oscillatory signals 

 440 

We emphasise the generality of these results, deriving from the fact that any 

arbitrary time series can be mapped into the frequency domain by a Fourier 

decomposition. Whilst we have so far simulated quite simplified evoked responses 

comprising only a few frequency components, our approach generalises to those 

that contain non-stationary and/or non-oscillatory components. In this section we 445 

demonstrate this with some more complex simulations. 

 

3.2.1. Sliding window Fourier decompositions 
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Real evoked responses are more complex than the illustrative examples we 450 

have simulated so far and in particular do not have spectral profiles that are 

constant over the whole trial epoch. We therefore anticipate that the methods 

introduced above will be most informative when combined with sliding window 

methods, e.g. where separate Fourier decompositions are applied to each 

window within a trial epoch rather than a single Fourier decomposition applied 455 

to the whole epoch.  

 

There are numerous methods for estimating spectral properties over sliding 

windows, which are typically similar in motivation but different in 

implementation. Perhaps the most important factor is how the trade-off 460 

between time and frequency resolution is handled. Given our focus on 

characterising representational dynamics over time, we prefer methods that 

use a fixed temporal resolution, such as the Short-Time Fourier Transform 

(STFT). This provides complex-valued Fourier coefficients in each frequency 

band at each timepoint within a trial, allowing decoding accuracy to then be 465 

computed timepoint-by-timepoint without the interpretational problems 

previously discussed. 

 

3.2.2. Non-stationary oscillatory signals 

 470 

To test these methods on evoked signals characterised by transient spectral 

properties, we simulated a signal over two channels using a combination of 

frequency chirp functions and unit step functions (example 1 in Figure 5). To 

maintain simplicity only one of the two conditions has this profile, the other is a 

null condition of stationary Gaussian noise. As shown by the time-frequency 475 

diagram on Figure 5A, the frequency distribution of the signal varies over time 

and over the two channels. For this signal, we then computed: 

 

(i) The broadband information content; This corresponds to the 

information content available to instantaneous signal decoding, i.e. the 480 

timepoint-by-timepoint decoding approaches that are most typically 
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used in the literature (T. Carlson et al., 2013; Cichy & Pantazis, 2017; 

Grootswagers et al., 2017). 

(ii) The complex spectrum information content; this corresponds to the 

information content available to complex spectrum decoding as we 485 

have proposed. In this case however we have estimated the complex 

spectral features using a sliding window (specifically using a STFT with 

50ms sliding Hamming window). 

 

As shown in Figure 5B, the broadband information content (analogous to the 490 

decoding accuracy obtained by instantaneous signal decoding) contains fast 

dynamics that do not clearly relate to the evoked signal shown in Figure 5A. 

Applying a similar STFT analysis to this information content (Figure 5B, right 

hand side) shows it reflects components at up to double the frequency of the 

corresponding signals (i.e. it contains components at up to 100Hz, double the 495 

frequencies identified in Figure 5A).  

 

In contrast, the complex spectrum information content provides frequency 

band specific measures of information content that more closely reflect the 

spectral distribution of information at each moment in time over the course of 500 

the trial (i.e. Figure 5B, lower plot reflects the combined contributions of the 

channel power spectral density plots in Figure 5A). From the perspective of 

representational dynamics, such information is at least complementary, and we 

would argue more informative than that available to instantaneous signal 

decoding. 505 

 

3.2.3. Non-oscillatory evoked signals 

 

In Results Section 1 we showed that consecutive peaks in decoding accuracy 

timecourses could arise due to a simple oscillatory signal, even if this oscillatory 510 

signal is itself stable over time. We argued that these peaks should not be 

interpreted as representing discrete events or cognitive phenomena. This begs 

the question, how do our methods perform if the underlying signals do derive 
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from discrete temporal events, where the underlying signals cannot be 

parsimoniously represented using sinusoidal components?  515 

 

To test this, we simulated an evoked response deriving from two spatially and 

temporally distinct “activations”, and repeated the analysis described above to 

compare the broadband and narrowband information content. To simulate 

non-oscillatory signals, each activation was characterised by a Gaussian kernel 520 

function (Figure 5C). As shown in Figure 5D, the broadband information content 

(i.e. that available when doing instantaneous signal decoding) produces two 

distinct peaks corresponding to each activation. Notably, this profile is 

replicated in the complex spectrum information content (Figure 5D, lower 

panel) showing that this method does not obscure such phenomena – provided 525 

the sliding window width is less than the period between these activations. 

Wider window lengths progressively include more information from both 

activations and the peaks become much less pronounced (see Supplementary 

Information Section S2 and Figure S2). We therefore conclude that, subject to 

appropriate sliding window sizes, complex spectrum decoding can eliminate the 530 

fast dynamics associated with sinusoidal components of the evoked response, 

whilst not eliminating the structure associated with spatially distinct, 

potentially non-oscillatory evoked activations. 
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 535 
Figure 5: Complex spectrum decoding remains applicable and informative even when the 

spectral properties vary over time or are not fundamentally oscillatory. A. In Example 1, 

we simulate a signal across two channels with a time-varying frequency ‘chirp’ response, 

with a different onset time on each of the two channels. Left hand side plots the actual trial-

averaged evoked response for each channel, right hand side the PSD as a function of time 540 

on each channel, showing the frequency content is transient on each channel and limited to 

frequencies below 50Hz. B. The information content associated with this signal. Top row 

plots the information content obtained by doing instantaneous signal decoding; right hand 

side plots the frequency profile of this mutual information timecourse, which reflects a mix 

of the spectrum from the two channels translated to double their original frequency (i.e. up 545 

to 80 Hz). Lower plot shows the mutual information obtained by complex spectrum 
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decoding in each frequency band, which reflects the true frequencies at which information 

is present in the original signal. C. In Example 2, we simulate a non-oscillatory evoked 

response comprising two distinct processes occurring at different times; these characterise 

the signal over each channel in time and frequency. D. The information content available to 550 

instantaneous signal decoding identifies and separates these processing stages. This profile 

of two distinct peaks is similarly recovered from the complex spectrum information content 

(provided a suitable size of sliding window is used), demonstrating that this approach does 

not obscure such features where they are genuinely reflected in non-sinusoidal activity. 

 555 

4. Evidence from MEG data 

 

The results we have presented are fundamentally theoretical and supported by 

simulated data from models of evoked activity. We therefore wanted to test how these 

findings extend to real data, and therefore tested our main predictions on a MEG 560 

dataset of visual image decoding. 

 

We took a publicly available dataset comprising 15 subjects viewing 118 different visual 

stimuli (Cichy et al., 2016). The epoched data was then decoded (see Methods) to 

predict the trial condition labels using the three paradigms: 565 

 

i. Instantaneous signal decoding: decoding the raw broadband signal time-point-

by-timepoint as widely performed in the literature (T. Carlson et al., 2013; Cichy 

& Pantazis, 2017; Grootswagers et al., 2017).  

 570 

ii. Narrowband Signal decoding: sliding window decoding using the time-frequency 

estimates from the STFT, but only using the real coefficients across all sensors as 

a set of features. This method is analogous to decoding on data filtered into 

specific frequency bands of interest. 

 575 

iii. Complex spectrum decoding: sliding window decoding using the time-frequency 

estimates from the STFT, using both the real and imaginary coefficients across all 

sensors as a set of features. 
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4.1. Decoding accuracy vs time in different decoding paradigms 580 

 

Figure 6A plots the decode accuracy derived from decoding under the three 

identified paradigms. As paradigms (ii) and (iii) provide accuracy in each frequency 

band independently, for ease of visualisation they are each plotted separately 

against paradigm (i). Averaged over all pairs of stimuli and all subjects, this identifies 585 

a systematic variation in the information content at different frequencies as a 

function of time. The earliest detectable information appears in higher frequencies, 

but these peak quite transiently at relatively low values and are quickly surpassed 

by information content in lower frequencies, which rise to higher values and are 

then sustained for a longer duration. Notably, the information in either the 10Hz or 590 

the 0Hz band exceeds that obtained by instantaneous signal decoding for nearly the 

entire period analysed. From the perspective of representational dynamics, this 

establishes first and foremost that Fourier decompositions can improve decoding 

accuracy over instantaneous signal decoding methods whilst retaining a profile of 

how the representational content evolves in both time and frequency.  595 

 

4.2. Complex spectrum decoding accuracy exceeds narrowband signal decoding 

accuracy 

 

Figure 6B compares the average classification accuracy in each frequency band, 600 

averaged over all subjects and pairs of stimuli, when either the complex spectrum 

decoding or narrowband signal decoding is applied (it follows from the definition of 

the discrete Fourier transform that the imaginary coefficients in the 0Hz and 50Hz 

frequency bands are always zero, so in these bands the two paradigms are in fact 

equivalent). In all cases the classification accuracy obtained using complex spectrum 605 

decoding exceeds that obtained using narrowband spectrum decoding; this 

information gap can be interpreted as the information stored in the gradient of 

these sinusoidal components. 
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 610 
Figure 6: Characterising information content across the frequency spectrum. A. Decoding 

accuracy timecourses obtained by instantaneous signal decoding vs either narrowband 

signal decoding (left) or complex spectrum decoding (right). All plots show mean +/- SE over 
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subjects. B. Directly comparing the accuracy vs time in each frequency band of narrowband 

signal decoding and complex spectrum decoding. Significance bars denote periods where 615 

complex spectrum decoding accuracy is significantly greater than narrowband signal 

decoding: p<0.01 using cluster permutation tests. C. Single subject results. The dynamics, 

and therefore any attempt to assess the temporal stability of the decode accuracy, are 

obscured by averaging over all participants and subjects. Top: taking a single subject, single 

pairwise comparison as an example, we show the decode accuracy obtained by either 620 

narrowband signal decoding or complex spectrum decoding as a function of time (upper) or 

frequency (lower). These show significant harmonic components at double the fundamental 

frequency in each band when narrowband signal decoding is used. Lower plot: We took all 

individual accuracy vs time plots (across all subjects and all stimulus comparisons) and 

computed their power spectral density, then averaged (plots show mean +/- SE over 625 

subjects). The power spectrum obtained using narrowband signal decoding show strong 

peaks at harmonic frequencies (for 10Hz and 20Hz bands) and at aliased frequencies (for 

30Hz and 40Hz bands). Significance bars denote significance at p<0.01 levels using cluster 

permutation tests; green bars denote complex spectrum decoding greater than narrowband 

signal decoding; blue bars denote narrowband signal decoding greater than complex 630 

spectrum decoding. This shows that, in all frequency bands, the increased accuracy obtained 

by complex spectrum decoding is concentrated in lower frequencies, reflecting more 

temporally stable representational spaces. 

 

4.3. Narrowband signal decoding produces spectral peaks at double their original 635 

frequency in inferred decoding accuracy metrics 

 

Our models predict that the information content associated with evoked spectral 

components at a given frequency is itself oscillatory at double that frequency, 

unless complex spectrum decoding is applied. We have so far plotted the average 640 

over all subjects and all comparisons, therefore obscuring some of the temporal 

dynamics evident in each comparison. For example, in Figure 6C we plot the 

timecourse obtained for one subject and one pair of stimuli; the accuracy 

timecourse obtained from complex spectrum decoding appears to follow the 

envelope of the equivalent timecourse obtained by narrowband signal decoding 645 
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which appears to show sinusoidal dynamics. If we take the PSD of these accuracy 

timecourses, we observe a peak at double the frequency band being analysed (i.e. 

the 10Hz and 20Hz bands are associated with a 20Hz and 40Hz spectral peak 

respectively). If we take the PSD of the timecourse for every pair of stimuli and 

every subject and average, we see the PSD is significantly higher in the 10Hz and 650 

20Hz bands at approximately 20Hz and 40Hz, respectively. 

 

Given a sampling rate of 100Hz, we expect representational aliasing to occur linked 

to any evoked spectral content above 25Hz. Specifically, given evoked spectral 

content at 30Hz or 40Hz, we expect representational aliasing artefacts at 40Hz and 655 

20Hz, respectively (for example, a 30Hz component is translated to 60Hz in the 

accuracy timecourses; as this is 10Hz above the Nyquist frequency, it is aliased to 

10Hz below the Nyquist frequency, i.e. to 40Hz). For both of these narrowband 

signals, we see peaks at these locations, confirming the presence of 

representational aliasing. We stress that this aliasing effect must also be present in 660 

the instantaneous signal decoding results, they just cannot be explicitly resolved as 

we have no knowledge of the frequencies at which they would be expected. 

 

Finally, in these plots we note that spectra are significantly more weighted towards 

the lower end of the frequency spectrum for complex spectrum decoding vs 665 

narrowband signal decoding, whilst the opposite relationship is the case towards 

the upper end of the frequency spectrum. This means that the higher accuracies 

obtained by complex spectrum decoding in Figure 5B are a result of increased low 

frequency content, or representational dynamics that are more stable over time. 

 670 

4.4. Complex Spectrum Decoding accesses information content that is complementary 

over frequencies 

 

Having established that complex spectrum decoding accesses information content 

that is not available to instantaneous signal decoding, one final question arises; is 675 

the complex spectral information across different frequencies overlapping, or 

complementary? That is to say, if we aggregate the information over frequency 
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bands, do we obtain performance that is merely equivalent to the best individual 

frequency band – or exceeding it? To answer this question, we trained an aggregate 

classifier to estimate the aggregate information distributed over all frequency bands 680 

(see Methods). 

 

Figure 7A plots the performance of the aggregate classifier against the complex 

spectrum decoding accuracies achieved in each frequency band, and that obtained 

by instantaneous signal decoding. The aggregate classifier significantly outperforms 685 

the instaneous signal decoder, reaching a peak accuracy of 67.6% vs 61.6%. As 

plotted in Figure 7B, this difference quantifies the total amount of information that 

is inadvertently being omitted by the insensitivity of instantaneous signal decoding 

paradigms to information stored in signal gradients. However the aggregate decoder 

accuracy also peaks at a level higher than that obtained in any individual frequency 690 

band. As in Figure 7C, over the period between 70msec and 190msec following 

stimulus presentation, the aggregate classification accuracy significantly exceeded 

the information content in any individual frequency. This coincides with the time 

over which significant information content was distributed across multiple frequency 

bands, especially higher frequency bands, proving that these different frequency 695 

bands contain information content that is complementary. The performance is quite 

different for timesteps more than 370msec after stimulus onset, with the ensemble 

classifier underperforming slightly relative to the best narrowband classifiers (albeit 

still outperforming standard broadband methods). Over this period, the classifiers 

trained on higher frequencies output chance level predictions, and only lower 700 

frequency bands contain meaningful information content. We conclude that over 

this period, all meaningful information is concentrated in lower frequency bands, 

and the inclusion of high frequency bands that only contain noise is in fact 

detrimental to classifier performance. 

 705 
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Figure 7: Classification accuracy obtained by aggregating information over multiple 

frequency bands. A. Plotting the classification accuracy achieved vs time for instaneous 

signal decoding, for each individual frequency using complex spectrum decoding, and then 

for the aggregate classifier. All plots show mean +/- SE over subjects. B. Plotting the contrast 710 

of the aggregate classifier accuracy minus the instantaneous signal decoding accuracy; 

significance bars denote p<0.01 using cluster permutation tests, green bars denote contrast 

is significantly positive, blue bars denote the sontrast is significantly negative. C. Plotting the 

contrast of aggregate classifier accuracy minus the best individual frequency (i.e. the highest 

accuracy obtained by any complex spectrum decoder at each timepoint); significance bars 715 

defined as for B.    

 
 

 

DISCUSSION 720 

 

We have outlined a widely overlooked problem in decoding pipelines: that frequency 

components in the evoked response produce corresponding components at double their 

original frequency content in the resulting accuracy metrics. Where researchers are not 

aware of this fundamental relationship, there is a considerable risk of misinterpreting 725 

results and, in particular, of inferring relationships with canonical frequency bands that are 

in fact trivial representations of the evoked response spectrum.  
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Our results are fundamentally mathematical, and should be interpreted as such; they derive 

from the expected Fourier spectrum of the evoked response, not from the fundamental 730 

frequency of a canonical neural oscillation. For example, a 40Hz Fourier component can be 

produced by a vast range of underlying neural sources, only a subset of which would be 

considered ‘gamma oscillations’. Our results apply regardless; thus the recommendation to 

low-pass filter with a cut-off frequency of one quarter of the sampling rate applies to any 

researcher doing instantaneous signal decoding, irrespective of the frequencies of neural 735 

activity they may be interested in or expecting.  

 

As an information theoretic result, if our modelling assumptions hold then these results are 

fundamental and apply to any instantaneous signal decoding approach regardless of 

methodological choices on the part of the researcher; they cannot be overcome by use of 740 

nonlinear classifiers, machine learning tools, or by analysing different accuracy metrics. In 

our analysis we have derived the spectrum of the information content up to an arbitrary 

monotonic scaling denoted by the function 𝑓. It follows that other widely used metrics to 

assess decoding accuracy (such as classification accuracy, distance from the classification 

hyperplane etc.) are each a different monotonic scaling of this quantity (see table 2 and SI 745 

for further details). We therefore argue that our results are universally applicable to 

instantaneous signal decoding pipelines regardless of any variations in methodological 

choices.  
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+ 𝜉1)Y 

 

𝐴X𝑍",1, 𝑌Y = 𝐹X𝑐1 + rScos(2𝜔𝑡

+ 𝜉1)Y 

 

𝐷X𝑍",1, 𝑌Y = 𝐹�X𝑐1 + rScos(2𝜔𝑡

+ 𝜉1)Y 

 

𝑊",1 𝐼X𝑊",1, 𝑌Y = 𝑓(2𝑐1) 𝐴X𝑊",1, 𝑌Y = 𝐹(2𝑐1) 𝐷X𝑊",1, 𝑌Y = 𝐹�(2𝑐1) 

Table 2: Mutual information results generalise to other common decoding metrics. We have 750 

characterised the information content associated with three variables up to an arbitrary 

monotonic function 𝑓. All our results generalise to other commonly used decoding metrics 

such as classification accuracy and distance from the hyperplane simply by substituting 𝑓 by 
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another monotonic function, here denoted by 𝐹 and 𝐹�  (see Supplementary Information 

Section S1 and Figure S1 for plots of these functions).  755 

 

We have characterised three major decoding paradigms but do not claim these to be 

exhaustive with respect to the literature. A very common approach involves the application 

of classifiers not to a recorded signal itself but to a set of Fourier features derived from a 

signal , which in most applications will be equivalent to the narrowband or complex 760 

spectrum decoding paradigms such that all our results remain applicable. However an 

emerging area of research infers nonlinear time-domain features, for example through the 

training of temporal convolutional networks or recurrent neural networks, that are then 

used as inputs for classification (Kalafatovich et al., 2020; Schirrmeister et al., 2017; Zubarev 

et al., 2019). These methods typically offer a greater ability to separate conditions, however 765 

the accompanying barriers to interpretability have to date limited their direct application in 

the study of representational dynamics. We hope that such interpretability barriers will be 

challenged and overcome in future work, and that the relationships we have outlined here 

may aid this endeavor. 

 770 

Finally, we have shown that complex spectrum decoding overcomes the problem of 

representational aliasing whilst also presenting other benefits; specifically, leading to higher 

accuracies that are more stable over time. However, it similarly presents its own challenges. 

The significant increase in dimensionality associated with a feature vector that varies 

simultaneously over time, space and frequency may present computational challenges. 775 

Furthermore, whilst we see interpretational benefits to having results that are resolved in 

both frequency and time, in some circumstances (such as the non-sinusoidal signal example 

simulated in Results Section 3.2.3) this additional complexity may not harbour any new 

insights. We have spoken broadly of Fourier analysis, again to stress that these results apply 

generically to STFTs, wavelet decompositions, or any other such method – however each of 780 

these apply different assumptions that mostly result in different trade-offs of time and 

frequency resolution. These trade-offs are likely to be especially pertinent in the context of 

high temporal resolution decoding. Nonetheless, the benefits can be quite substantial and 

well justified by the results. 

 785 
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In conclusion, we have characterised the relationship between the stimulus evoked 

spectrum and the information content spectrum, which is commonly used to investigate the 

brain’s representational dynamics. Understanding how these two quantities relate is crucial 

to interpreting results obtained via decoding pipelines. By establishing these relationships 

under three different decoding paradigms, this work opens the door to much stronger 790 

interpretation of decoding results by linking the question of what is being represented with 

the neural mechanisms explaining how it is being represented. We hope this will enable 

more targeted scientific enquiry to uncover the true mechanisms by which the brain 

processes diverse forms of information.  

 795 

METHODS  

 

1. Model outline 

The assumptions expressed in Results Section 1.1 can be more fully expressed 

mathematically, with corresponding expressions obtained for the probability 800 

distribution of each of the random variables 𝑋", 𝑌 and 𝑍",1. 

 

We have assumed that the stimulus class is binary with equal class probabilities. This 

corresponds to the following distribution for 𝑌: 

 805 

𝑃(𝑌) = � 1	with probability 0.5
−1	with probability 0.5 

Equation 12 

Following on from Equation 1, since the 𝜇"  term captures the mean over both 

conditions, we can then model the expected value of each signal 𝑧$,",1  on individual 

trials with polarity determined by the trial condition 𝑦$. We assume these narrowband 810 

signals have multivariate Gaussian noise that is independent and identically distributed 

(over trials and conditions) – this corresponds to an assumption that only the evoked 

response, and not the induced response, differs over the two conditions. This is a 

simplifying assumption that we discuss further and ultimately relax in Results Section 

1.4. This allows us to specify the probability distributions of 𝑍",1  (of which 𝑧$,",1 is the 815 

sample corresponding to the 𝑛th trial) as follows:  
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𝑃X𝑍",1�YY = 𝑁(𝑌𝐴1 cos(𝜔𝑡 + 𝜙1) , Σ1) 
Equation 12 

Each 𝐴1 term is a diagonal [𝑃	 × 𝑃] matrix, where the 𝑖th diagonal entry, denoted by 820 

𝑎1,V, reflects the magnitude of the component at frequency 𝜔 on channel 𝑖. Both 𝜔 and 

𝑡 are scalar indices reflecting the frequency and time respectively, whereas 𝜙1  is a 

[𝑃	 × 1] vector, each entry of which contains the phase offset of the oscillation at 

frequency 𝜔 across the 𝑃 channels. Finally, we model induced effects (i.e. narrowband 

power that is not phase aligned to the stimulus) independently in each frequency band, 825 

where Σ1  is the [𝑃 × 𝑃] covariance matrix modelling the spatial variance and 

correlations expressed at frequency band 𝜔. 

 

For any set of discretely sampled data recordings with at least 𝑃 total trials (i.e. more 

trials than channels), all of the above parameters are fully identifiable. The data for each 830 

channel and each trial can be decomposed into a discrete Fourier series representation 

of the above form where the number of frequency components equals half the number 

of timepoints in the trial Ω = �
|
 (for simplicity we here model a single Fourier 

decomposition over the trial; this can equivalently be computed over sliding windows as 

in Results Section 3, in which case the number of frequency components equals half the 835 

number of samples in a window). Following from the uniqueness of the Fourier 

transform, unique values can be obtained for the diagonal matrix 𝐴1, the phase offsets 

𝜙1  and the patterns of spatial correlations in each frequency Σ1. 

 

The distribution of the broadband signal 𝑋"  given in Equation 2 then follows directly 840 

from Equation 1 (by observing that a sum of narrowband Gaussian components is also 

Gaussian distributed). 

 

2. MEG decoding methods 

 845 

We took a publicly available dataset comprising 15 subjects viewing 118 different visual 

stimuli (Cichy et al., 2016). This data had been acquired on an Elekta Neuromag scanner 
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with 306 channels (204 planar gradiometers and 102 magnetometers) at 1kHz sampling 

rate, with filtering applied at acquisition with bandpass 0.03Hz to 300Hz. We 

downsampled the data to 100 samples per second with an anti-aliasing filter with cut-off 850 

at 50Hz and extracted the 0.5 second epochs immediately following stimulus 

presentation. The data was then mapped into a complex time-frequency decomposition 

using an STFT with Hamming window length of 100ms. The epoched data was then 

decoded to predict the trial condition labels using the three paradigms outlined in the 

text. Each approach fit linear support vector machine classifiers using three-fold cross 855 

validation. This was applied to each pair of the 118 images in a mass pairwise 

classification paradigm as originally implemented by (Cichy et al., 2016). In cases (ii) and 

(iii), classifiers were trained separately on each frequency band. The decoding used 

three-fold cross-validation to obtain independent classification accuracy metrics as a 

function of time and frequency for each pair of images and each participant. 860 

 

Finally, to test the hypothesis that different frequency bands contained complementary 

information, we trained an aggregate classifier to estimate the aggregate information 

distributed over all frequency bands. We did this through a nested cross validation 

procedure. An inner cross validation loop simply consisted of the complex spectrum 865 

decoding estimates described above. The outer cross validation loop then partitioned all 

of the stimuli into two equally sized groups and applied two-fold cross validation to 

obtain accuracy estimates. This outer loop consisted of a random forest ensemble 

classifier with 100 trees, trained to predict the class label from the outputs of the 

complex spectrum decoding classifiers on each trial. This outer loop was run ten times 870 

with replacement for each subject, randomly sampling a different subset of stimuli with 

replacement on each cross validation fold.  

 

Appendices 

 875 

A. Mutual information for a Gaussian mixture model with equal covariances 

Let us first consider a simpler model and derive a general result that we can then use to 

prove our claims. Suppose we have a random variable 𝑌 distributed as given in the text: 
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P(𝑌) = 	 � 1	with probability	0.5
−1	with probability	0.5 880 

 

Suppose we then have another random variable 𝐵 of dimension 𝑃	 × 1 conditioned on Y 

as follows: 

 

𝑃(𝐵|𝑌) = 𝑁(𝜇 + 𝑌m, S) 885 

 

This is equivalent to a Gaussian mixture model with two components (corresponding to 

the cases 𝑌 = 1 and 𝑌 = −1) and equal covariances. The marginal distribution can then 

be expressed as follows: 

 890 

𝑃(𝐵) = 𝑃(𝑌 = 1)𝑃(𝐵|𝑌 = 1) + 𝑃(𝑌 = −1)𝑃(𝐵|𝑌 = −1) 

 

=
1

2�2𝜋|𝑆|
�𝑒�

'
|(_����)

����(_����) + 𝑒�
'
|(_��s�)

����(_��s�)� 

= �
1

�2𝜋|𝑆|
𝑒�

'
|(_����)

����(_����)�^
1 + 𝑒�|(_��)�����

2
c 

= 𝑁(𝐵|𝜇 +𝑚, 𝑆)	^
1 + 𝑒�|(_��)�����

2
c 895 

 

Where we use the notation	𝑁(𝐵|𝜇 +𝑚, 𝑆)	 to denote the Gaussian distribution over 𝐵 

with mean 𝜇 +𝑚 and covariance 𝑆. We shall furthermore use the notation 𝔼)(�)𝑓(𝑥) to 

denote the expectation of a function 𝑓(𝑥) given the probability distribution 𝑃(𝑋). We 

can now compute the following result for the entropy of 𝐵: 900 

 

𝐻(𝐵) = −�𝑃(𝐵) log 𝑃(𝐵) 𝑑𝐵 
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= −�
1

2�2𝜋|𝑆|
�𝑒�

'
|(_����)

����(_����)

+ 𝑒�
'
|(_��s�)

����(_��s�)� log 𝑁(𝐵|𝜇 +𝑚, 𝑆) ^
1 + 𝑒�|(_��)�����

2
c¡𝑑𝐵 905 

 

= log2 −
1
2𝔼¢(_|�s�,�) log𝑁

(𝐵|𝜇 +𝑚, 𝑆) −
1
2𝔼¢(_|�s�,�) log

X1 + 𝑒�|(_��)�����Y

−
1
2𝔼¢(_|���,�) log𝑁

(𝐵|𝜇 −𝑚, 𝑆) −
1
2𝔼¢(_|���,�) log

X1 + 𝑒|(_��)�����Y 

 

We then observe that the second and fourth terms correspond to the entropy of a 910 

multivariate Gaussian, which has a known solution; we similarly observe that the third 

and fifth remaining terms are each an expectation of a univariate function in 𝑢 =

2(𝐵 − 𝜇)�𝑆�'𝑚 and 𝑣 = 2(𝐵 + 𝜇)�𝑆�'𝑚 respectively. With a substitution of variables 

this simplifies to: 

 915 

𝐻(𝐵) = log2 +
1
2 log |𝑆| +

𝑃
2
(1 + log2𝜋) − 𝔼¢(¥||������,¦������) log(1 + 𝑒�¥) 

Similarly, we find that the conditional entropy is given by: 

 

𝐻(𝐵|𝑌) = −
1
2𝔼¢(_|���,�) log𝑁

(𝐵|𝜇 −𝑚, 𝑆) −
1
2𝔼¢(_|�s�,�) log𝑁

(𝐵|𝜇 +𝑚, 𝑆) 

=
1
2 log

|𝑆| +
𝑃
2 (1 + log2𝜋) 920 

 

We can therefore apply the chain rule to derive the mutual information: 

 

𝐼(𝐵, 𝑌) = 𝐻(𝐵) − 𝐻(𝐵|𝑌) 

 925 

= log2 − 𝔼¢(¥|§,|§) log(1 + 𝑒�¥) 

 

Note that the second term involves an integral that is intractable, but is a function of the 

scalar product 𝛼 = 2𝑚�𝑆�'𝑚. We therefore can state equivalently that: 

 930 
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𝐼(𝐵, 𝑌) = 𝑓(𝛼) 

 

Where 

𝑓(𝛼) = log2 −�
1

2√𝜋𝛼
𝑒�

'
¦§(¥�§)

ª
log(1 + 𝑒�¥) 𝑑𝑢 

 935 

B. Proof that the function 𝒇 is monotonic and concave 

 

Firstly, let us define the following probability distribution: 

𝑄(𝑢) =
1

𝐶'2√𝜋𝛼
𝑒�

'
¦§(¥�§)

ª
log(1 + 𝑒�¥) 

Where 𝐶' = ∫ '
|√{§

𝑒�
�
¯°(¥�§)

ª
log(1 + 𝑒�¥) 	𝑑𝑢±

�± = 𝔼¢(¥|§,|§)log	(1 + 𝑒�¥). Our proof 940 

below rearranges the first and second derivative of 𝑓 in terms of the higher moments of 

this distribution, thus we now seek an expression for these moments. The moment 

generating function for 𝑄(𝑢) is: 

𝔼²(¥)𝑒"¥ =
1
𝐶'
�

1
2√𝜋𝛼

𝑒�
'
¦§(¥�§)

ª
log(1 + 𝑒�¥) 𝑒"¥	𝑑𝑢

±

�±
 

=
1
𝐶'
𝑒	§"('s")	 �

1
2√𝜋𝛼

𝑒�
'
¦§(¥�§('s|"))

ª
log(1 + 𝑒�¥) 	𝑑𝑢

±

�±
 945 

=
𝔼¢(¥|§('s|"),|§)log	(1 + 𝑒�¥)	
𝔼¢(¥|§,|§)log	(1 + 𝑒�¥)	

𝑒§"('s") 

=
𝔼¢(¥|§,|§) log(1 + 𝑒�¥�|§")
𝔼¢(¥|§,|§) log(1 + 𝑒�¥)

𝔼¢(¥|§,|§)𝑒"¥ 

 

The moment generating function allows us to compute the higher moments of the 

distribution that are ultimately required for the proof. As the algebra for this is 950 

somewhat tedious we refer readers to Supplementary Information Section S3 for full 

details, where we obtain the following expressions for these moments: 

 

𝔼²(¥)𝑢| = 𝛼| + 2𝛼 −
4𝛼|

𝐶'
𝔼¢(¥|§,|§)X1 − 𝜎(𝑢)Y

|
 

𝔼²(¥)𝑢¦ = 𝛼¦ + 12𝛼´ + 12𝛼| −
8𝛼´

𝐶'
𝔼¢(¥|§,|§) �X1 − 𝜎(𝑢)Y

|(𝛼(2𝜎(𝑢) − 1)| + 6)� 955 
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Where 𝜎(𝑢) = '
's¶�·

 denotes the logistic sigmoid function. Note that the terms inside 

the expectations are strictly positive, such that their expectation is always greater than 

zero. 

 960 

Now, consider the function 𝑓(𝛼), plotted in Figure A1 and specified as in Appendix A. 

 

 
Figure A1: the function 𝑓(𝛼), which uniquely determines the information content of data 

generated from the Gaussian model specified in the text, is a monotonic concave 965 

function. 

The first derivative is: 

 

𝑓¸(𝛼) =
𝑑
𝑑𝛼 𝔼¢(¥|§,|§) log �

1
1 + 𝑒�¥� 

	 970 

Let us denote by 𝑔(𝛼, 𝑢) = '
|√{§

𝑒�
(·�°)ª

¯° log º '
's¶�·

». We can then evaluate by Leibniz 

rule: 

𝑑
𝑑𝛼 �

�𝑔(𝛼, 𝑢)𝑑𝑢� = �
𝜕
𝜕𝛼𝑔

(𝛼, 𝑢)𝑑𝑢 

 

𝑓¸(𝛼) = � log �
1

1 + 𝑒�¥�
^

−1
4√𝜋𝛼´

𝑒�
(¥�§)ª
¦§ +

1
2√𝜋𝛼

𝑒�
(¥�§)ª
¦§ �

𝑢| − 𝛼|

4𝛼| �c𝑑𝑢 975 
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= ��
1

2√𝜋𝛼
𝑒�

(¥�§)ª
¦§ � log(1 + 𝑒�¥) �

𝛼| + 2𝛼 − 𝑢|

4𝛼| �𝑑𝑢 

=
𝐶'
4𝛼| 𝔼²(¥)

(𝛼| + 2𝛼 − 𝑢|) 

Substituting the above expression for 𝔼²(¥)𝑢|, we have: 

𝑓¸(𝛼) =
𝐶'
4𝛼| (𝛼

| + 2𝛼 − 𝛼| − 2𝛼 +
4𝛼|

𝐶'
𝔼¢(¥|§,|§)X1 − 𝜎(𝑢)Y

|
 

= 𝔼¢(¥|§,|§)X1 − 𝜎(𝑢)Y
|
 980 

> 0 

We conclude that 𝑓 is monotonic. 

 

A second application of Leibniz’ rule gives us the second derivative: 

𝑓¸¸(𝛼) = �
𝜕
𝜕𝛼 �

1
2√𝜋𝛼

𝑒�
(¥�§)ª
¦§ � �

𝑢| − 4𝛼| − 2𝛼
4𝛼| � log �

1
1 + 𝑒�¥� 𝑑𝑢 985 

= �log�
1

1 + 𝑒�¥��
𝛼¦ + 4𝛼´ + (12 − 2𝑢|)𝛼| − 12𝑢|𝛼 + 𝑢¦

32√𝜋𝛼½
� 𝑒�

(¥�|§)ª
¦§ 𝑑𝑢 

= −𝐶'�
1

2𝐶'√𝜋𝛼
𝑒�

(¥�§)ª
¦§ log(1 + 𝑒�¥) �

𝛼¦ + 4𝛼´ + 12𝛼| − 2𝑢|(6𝛼 + 𝛼|) + 𝑢¦

16𝛼¦ �𝑑𝑢 

= −
𝐶'
16𝛼¦ 𝔼²(¥)

(𝛼¦ + 4𝛼´ + 12𝛼| − 2𝑢|(𝛼| + 6𝛼) + 𝑢¦) 

Now substituting the above expressions for 𝔼²(¥)𝑢| and 𝔼²(¥)𝑢¦ we again find that 

most terms cancel out leaving us with: 990 

𝑓¸¸(𝛼) = −
𝐶'
16𝛼¦

^2�
4𝛼|

𝐶'
𝔼¢(¥|§,|§)X1 − 𝜎(𝑢)Y

|
� (6𝛼 + 𝛼|)

−
8𝛼´

𝐶'
𝔼¢(¥|§,|§) �X1− 𝜎(𝑢)Y

|(𝛼(2𝜎(𝑢) − 1)| + 6)�c 

= −
1
2𝛼𝔼¢(¥|§,|§)

X1 − 𝜎(𝑢)Y
|X6 + 𝛼 − (𝛼(2𝜎(𝑢) − 1)| − 6)Y 

= −
1
2𝔼¢(¥|§,|§)

X1 − 𝜎(𝑢)Y
|(1 − (2𝜎(𝑢) − 1)|) 

= −𝔼¢(¥|§,|§)2𝜎(𝑢)X1 − 𝜎(𝑢)Y
´
 995 

< 0 

We conclude that 𝑓 is concave. 
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C. Mutual information of the narrowband signal 

Consider the narrowband real signal 𝑍1,"  as specified in Equation 12. It can be seen that 1000 

this is a special case of the model specified in Appendix A by substituting the following: 

𝑚 = 𝐴1 cos(𝜔𝑡 + 𝜙1) 

𝑆 = Σ1  

It therefore follows that the information content is given by: 

𝐼X𝑍",1, 𝑌Y = 𝑓(2𝑚�𝑆𝑚) 1005 

Re-writing the mean term in cartesian form, we have: 

𝑚 =
(𝑢1 + 𝑖𝑣1)𝑒V1" + (𝑢1 − 𝑖𝑣1)𝑒�V1"

2  

Where 𝑢1 = 𝐴1cos	(𝜙1) and 𝑣1 = 𝐴1sin	(𝜙1). This allows us to determine the 

information term: 

2𝑚�𝑆𝑚 =
1
2 º
(𝑢1 + 𝑖𝑣1)𝑒V1" + (𝑢1 + 𝑖𝑣1)𝑒�V1"»

�
Σ1�' º(𝑢1 + 𝑖𝑣1)𝑒V1"1010 

+ (𝑢1 + 𝑖𝑣1)𝑒�V1"» 

=
1
2
À𝑒|V1"(𝑢1 + 𝑖𝑣1)�Σ�'(𝑢1 + 𝑖𝑣1) + 𝑒�|V1"(𝑢1 − 𝑖𝑣1)�Σ�'(𝑢1 − 𝑖𝑣1)

+ 2𝑢1� Σ�'𝑢1 + 2𝑣1�Σ�'𝑣1Á 

= �𝑢1� Σ�'𝑢1 + 𝑣1�Σ�'𝑣1 + (𝑢1� Σ�'𝑢1 − 𝑣1�Σ�'𝑣1)
𝑒|V1" + 𝑒�|V1"

2

− 2𝑢1� Σ�'𝑣1
𝑒|V1" − 𝑒�|V1"

2𝑖 � 1015 

= (𝑢1� ΣS�'𝑢1 + 𝑣1�ΣS�'𝑣1 + (𝑢1� ΣS�'𝑢1 − 𝑣1�ΣS�'𝑣1) cos 2𝜔𝑡 − 2𝑢1� ΣS�'𝑣1 sin 2𝜔𝑡) 

= 𝑐1 + 𝑟1 cos(2𝜔𝑡 + 𝜉1) 

Where 𝑐1 = 𝑢1� ΣS�'𝑢1 + 𝑣1�ΣS�'𝑣1, tan 𝜉1 =
|¥u�ÃÄ��Åu

¥u�ÃÄ��¥u�Åu�ÃÄ��Åu
 and 𝑟1| =

(𝑢1� ΣS�'𝑢1 − 𝑣1�ΣS�'𝑣1)| + (2𝑢1� ΣS�'𝑣1)|. 

 1020 

Alternatively, returning to the polar coordinates used throughout the paper, we have: 

 

𝑐1 = cos(𝜙1�) 𝐴1Σ�'𝐴1 cos(𝜙1) + sin(𝜙1�) 𝐴1Σ�'𝐴1 sin(𝜙1) 

= 𝑇𝑟(𝐴1Σ�'𝐴1(cos𝜙1 cos(𝜙1�) + sin(𝜙1) sin(𝜙1�))) 

= 𝑇𝑟(𝐴1Σ�'𝐴1 cos[𝜙1 − 𝜙1�]) 1025 
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And applying the same steps for the remaining variables gives us: 

 

𝑟1| = 	𝑇𝑟|(𝐴1Σ1�'𝐴1 cos([𝜙1 + 𝜙1�])) + 	𝑇𝑟|(𝐴1Σ1�'𝐴1sin	([𝜙1 + 𝜙1�])) 

𝜉1 = 𝑡𝑎𝑛�'(
𝑇𝑟(𝐴1Σ1�'𝐴1sin	([𝜙1 + 𝜙1�]))
𝑇𝑟(𝐴1Σ1�'𝐴1cos	([𝜙1 + 𝜙1�]))

) 1030 

 

Where we have used the notation [𝜙 ± 𝜙�] for the [𝑃	 × 𝑃]	matrix constructed from 

the [𝑃	 × 1] vector 𝜙1  such that the 𝑖, 𝑗th matrix entry is given by 𝜙1,V ± 𝜙1,È. We have 

similarly used 𝑣𝑒𝑐 to denote the vec operator. 

 1035 

We conclude that the narrowband signal information content is given by: 

𝐼X𝑍",1, 𝑌Y = 𝑓X𝑐1 + rScos(2𝜔𝑡 + 𝜉1)Y 

 

D. Mutual information of the broadband signal 

Consider the broadband signal 𝑋"  as specified in Equation 2. It can be seen that this is a 1040 

special case of the model specified in Appendix A by substituting the following: 

𝑚 = E 𝐴1 cos(𝜔𝑡 + 𝜙1)
F

1GH

 

𝑆 = E Σ1

F

1GH

 

It therefore follows that the information content in the broadband signal is given by  

𝐼(𝑋", 𝑌) = 𝑓(2𝑚�𝑆𝑚) 1045 

Substituting the above values: 

2𝑚�𝑆𝑚 = 2 ÉE 𝐴1 cos(𝜔𝑡 + 𝜙1)
F

1GH

Ê

�

ÉE Σ1

F

1GH

Ê ÉE 𝐴1 cos(𝜔𝑡 + 𝜙1)
F

1GH

Ê 

= 2ËE cos(𝜔𝑡 + 𝜙1)�
F

1GH

𝐴1Σ_𝐴1 cos(𝜔𝑡 + 𝜙1)

+ 2 cos(𝜔𝑡 + 𝜙1)� 𝐴1Σ_   E 𝐴Ì cosX𝜓𝑡 + 𝜙ÌY
F

ÌG1s'

¡Î 

Writing in cartesian coordinates, such that: 1050 
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𝐴1 cos(𝜔𝑡 + 𝜙1) =
(𝑢1 + 𝑖𝑣1)𝑒V1" + (𝑢1 − 𝑖𝑣1)𝑒�V1"

2  

This becomes: 

2𝑚�𝑆𝑚

= 2ËE
(𝑢1� + 𝑖𝑣1�)𝑒V1" + (𝑢1� − 𝑖𝑣1�)𝑒�V1"

2 Σ_
(𝑢1 + 𝑖𝑣1)𝑒V1" + (𝑢1 − 𝑖𝑣1)𝑒�V1"

2

F

1GH

+ 2
(𝑢1� + 𝑖𝑣1�)𝑒V1" + (𝑢1� − 𝑖𝑣1�)𝑒�V1"

2 Σ_   E
X𝑢Ì + 𝑖𝑣ÌY𝑒VÌ" + X𝑢Ì − 𝑖𝑣ÌY𝑒�VÌ"

2

F

ÌG1s'

¡Î 1055 

= 𝑐_ + E 𝑟_,1 cos(2𝜔𝑡 + 𝜉_,1)
F

1GH

+ ℎ(𝑡) 

Where 𝑐_ = ∑ 𝑢1� ΣÑ�'𝑢1 + 𝑣1�ΣÑ�'𝑣1F
1GH , tan 𝜉_,1 =

|¥u�ÃÒ
��Åu

¥u�ÃÒ
��¥u�Åu�ÃÒ

��Åu
 and 𝑟_,1| =

(𝑢1� ΣÑ�'𝑢1 − 𝑣1�ΣÑ�'𝑣1)| + (2𝑢1� ΣÑ�'𝑣1)|, and the timeseries ℎ(𝑡) contains harmonic 

components at the sum and difference of each broadband frequency component: 

ℎ(𝑡) = 2E E X𝑢1� Σ_𝑢Ì − 𝑣1�Σ_𝑣ÌY cosX(𝜓 + 𝜔)𝑡Y
F

ÌG1s'

F

1GH

1060 

− X𝑢1� Σ_𝑣Ì + 𝑣1�Σ_𝑢ÌY sinX(𝜓 + 𝜔)𝑡Y

+ X𝑢1� Σ_𝑢Ì + 𝑣1�Σ_𝑣ÌY cosX(𝜓 − 𝜔)𝑡Y

+ X𝑣1�Σ_𝑢Ì − 𝑢1� Σ_𝑣ÌY sinX(𝜓 − 𝜔)𝑡Y 

 

We conclude that the broadband information content is given by  1065 

𝐼(𝑋", 𝑌) = 𝑓 ^𝑐_ +E𝑟_,1	cosX2𝜔𝑡 + 𝜉_,1Y + h(t)
F

1

c 

 

E. Mutual information of the complex-valued Fourier signal 

Consider the complex signal 𝑊1," as specified in Equation 8. It can be seen that this is a 

special case of the model specified in Appendix A by substituting the following: 1070 

𝑚 = [𝑢1; 𝑣1] 

𝑆 = ÔΣS 0
0 ΣS

Õ 

It therefore follows that the information content is given by: 
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𝐼X𝑊",1, 𝑌Y = 𝑓(2𝑚�𝑆𝑚) 

Substituting the above values we observe that: 1075 

2𝑚�𝑆𝑚 = 2(𝑢1� ΣS�'𝑢1 + 𝑣1�ΣS�'𝑣1) 

= 2𝑐1 

We conclude that the information content in the complex signal 𝑊1," is given by: 

𝐼X𝑊",1, 𝑌Y = 𝑓(2𝑐1) 

 1080 

F. Mutual information for a Gaussian mixture model with different covariances 

The modelling above assumes that the induced response (i.e. the changes in power that 

have no phase alignment to the stimulus) has the same distribution over both stimulus 

conditions. This corresponds to an assumption that the narrowband covariance matrix is 

invariant over stimulus conditions. To explore how our results generalise to the case of 1085 

stimulus-specific induced effects, let us return to the result of Appendix A and now 

define a new random variable 𝐵Ö  of dimension 𝑃	 × 1 as follows: 

 

𝐵Ö = 𝐵 + 𝜖̃ 

 1090 

Where the new residual terms have distribution 𝑃(𝜖̃|𝑌) = 𝑁(0, UÙ) will be used to 

model induced effects. We assume that 𝑃(𝜖̃|𝑌) is independent of 𝑃X𝐵Ö�𝑌Y. We 

previously defined 𝐵 as a Gaussian mixture model with two components (corresponding 

to the cases 𝑌 = 1 and 𝑌 = −1) and equal covariances; thus the new random variable 

has a distribution given by: 1095 

 

𝑃X𝐵Ö�𝑌Y = 𝑁(𝜇 + 𝑌m, S + UÙ) 

 

Which corresponds to a Gaussian mixture model with some common covariance given 

by 𝑆 as well as some stimulus-specific covariance given by 𝑈Ù. The mutual information 1100 

for this variable is not tractable, however we instead obtain an upper bound by 

observing that 𝐵Ö  is a linear function of 𝐵 and 𝜖̃, therefore the data processing inequality 

tells us that: 

𝐼XY,𝐵ÖY ≤ 𝐼(𝑌, [𝐵; 𝜖̃]) 
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 1105 

Where [𝐵; ϵÜ]	is the vector obtained by concatenating the random variables 𝐵 and 𝜖̃. We 

shall now obtain an expression for the mutual information between this new term and 

the stimulus labels 𝑌. Note that the marginal distribution is given by: 

 

𝑃([𝐵; ϵÜ]) = 	𝑃(𝑌 = 1)𝑃([𝐵; ϵÜ]|𝑌 = 1) + 𝑃(𝑌 = −1)𝑃([𝐵; ϵÜ]|𝑌 = −1) 1110 

 

=
1

2�2𝜋|𝑆||𝑈'|
𝑒�

'
|(Ñ����)

����(Ñ����)�'|ÝÜ
�Þ���ÝÜ

+
1

2�2𝜋|𝑆||U�'|
𝑒�

'
|(Ñs�s�)

����(Ñs�s�)�'|ÝÜ
�Þ���ÝÜ  

=
1

ß2𝜋 à𝑆 0
0 𝑈'

à
𝑒�

'
|ºá

Ñ
ÝÜ â�á

�s�
H â»

�
�
� H
H ã�

�
��
ºáÑÝÜ â�á

�s�
H â»	 Ë

1 + |U'|
|U�'|

𝑒�|(Ñ�ä)
åÃ��(�s�)�'|ÝÜ

�XÞ�����Þ���YÝÜ 	

2 Î 

 1115 

Following the same approach of Appendix A, we obtain the following for the entropy: 

 

𝐻([𝐵; ϵÜ]) = −�𝑃([𝐵; ϵÜ]) log𝑃([𝐵; ϵÜ]) 𝑑[𝐵; ϵÜ] 

= −
1
2𝔼¢(áÑÝÜ â|á

�s�
H â,Ô

� H
H ã�

Õ
Ëlog�𝑁 �áB𝜖̃â à á

𝜇 +𝑚
0 â , Ô𝑆 0

0 𝑈'
Õ��Ë

1 + |U'|
|U�'|

𝑒�|(Ñ�ä)
åÃ����'|ÝÜ

�XÞ�����Þ���YÝÜ 	

2 ÎÎ

−
1
2𝔼¢(áÑÝÜ â|á

���
H â,Ô

� H
H ã��

Õ
Ëlog�𝑁 �áB𝜖̃ â à á

𝜇 − 𝑚
0 â , Ô𝑆 0

0 𝑈�'
Õ��Ë

1 + |U�'||U'|
𝑒|(Ñ�ä)

åÃ����'|ÝÜ
�XÞ����Þ����YÝÜ	

2 ÎÎ 1120 

= log 2 − 𝐻([𝐵; ϵÜ]|𝑌) −
1
2𝔼¢(áÑÝÜ â|á

�s�
H â,Ô

� H
H ã�

Õ
log �1 +

|U'|
|U�'|

𝑒�|(Ñ�ä)
åÃ����'|ÝÜ

�XÞ�����Þ���YÝÜ	�

−
1
2𝔼¢(áÑÝÜ â|á

���
H â,Ô

� H
H ã��

Õ
log �1 +

|U�'|
|U'|

𝑒|(Ñ�ä)
åÃ����'|ÝÜ

�XÞ����Þ����YÝÜ 	� 

 

Applying the chain rule we have: 

 1125 
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I(𝑌, [𝐵; ϵÜ]) = log2 −
1
2𝔼¢(áÑÝÜ â|á

�s�
H â,Ô

� H
H ã�

Õ
log �1 +

|U'|
|U�'|

𝑒�|(Ñ�ä)
åÃ����'|ÝÜ

�XÞ�����Þ���YÝÜ 	�

−
1
2𝔼¢(áÑÝÜ â|á

���
H â,Ô

� H
H ã��

Õ
log �1 +

|U�'|
|U'|

𝑒|(Ñ�ä)
åÃ����'|ÝÜ

�XÞ����Þ����YÝÜ	� 

 

Now noting that log(1 + 𝑒�è) is a convex function, and that the expectations over B 

and 𝜖̃ can be separated as they are independent, we can apply Jensen’s inequality to the 1130 

expectation over 𝜖̃ terms to obtain: 

I(𝑌, [𝐵; ϵÜ]) ≤ log 2 −
1
2𝔼¢(Ñ|�s�,�) log �1 +

|U'|
|U�'|

𝑒�|(Ñ�ä)
åÃ����'|�éXÞ��

��Þ��êëY	�

−
1
2 𝔼¢(Ñ|���,�) log �1 +

|U�'|
|U'|

𝑒|(_��)
åÃ����'|�éXÞ�

��Þ���êëY	� 

 

Let us now define a generalisation of the previously defined function 𝑓(𝛼) to the 1135 

following: 

𝑓ì(𝛼) = log 2 − �
1

2√𝜋𝛼
𝑒�

'
¦§(¥�§)

ª
log(1 + 𝜌𝑒�¥) 𝑑𝑢 

This allows us to write the information content upper bound as: 

𝐼XY, BîY ≤
𝑓ì�(α) + 𝑓ìª(α)

2  

where 𝛼 is the same term specified in Appendix A, and the new terms 𝜌' =1140 

|Þ�|
|Þ��|

𝑒�
�
ª�éXÞ��

��Þ��êëY and 𝜌| =
|Þ��|
|Þ�|

𝑒�
�
ª�éXÞ�

��Þ���êëY. 

 

G. Upper bound for narrowband information content with induced effects 

Let us now model the narrowband signal with stimulus dependent induced effects as 

follows: 1145 

  

𝑍Ö$,",1 = 𝑍$,",1 + ϵÜ1,"  

 

Where the new residual terms have distribution 𝑃XϵÜ1,"|𝑌Y = 𝑁(0, ΛÙ,1). Note this is the 

same form as the model given in Appendix F, by substituting: 1150 

 

𝑚 = 𝐴1 cos(𝜔𝑡 + 𝜙1) 
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𝑆 = Σ1  

𝑈Ù = ΛÙ,1  

 1155 

From Appendix F, we deduce the following: 

 

𝐼X𝑌, 𝑍Ö$,",1Y ≤
𝑓ì�X𝑐1 + rScos(2𝜔𝑡 + 𝜉1)Y + 𝑓ìªX𝑐1 + rScos(2𝜔𝑡 + 𝜉1)Y

2  

 

Where 𝜌' =
�ñ�,u�
�ñ��,u�

𝑒�
�
ª�éXñ��,u

�� ñ�,u�êY and 𝜌| =
�ñ��,u�
�ñ�,u�

𝑒�
�
ª�éXñ�,u

�� ñ��,u�êY are both 1160 

constant with respect to time, and 𝑐1, 𝑟1 and 𝜉1  are the same terms specified in 

Appendix C. Thus, the narrowband information content associated with condition-

dependent evoked and induced effects has an upper bound which is a sinusoidal 

function translated to double the original narrowband signal frequency (i.e. a slightly 

modified function of the same dynamics previously characterised for the case where 1165 

only evoked effects are stimulus-dependent). 

 

H. Upper bound for broadband information content with induced effects 

Let us now model the broadband signal with stimulus dependent induced effects as 

follows: 1170 

  

𝑋Ö" = 𝜇" + E 𝑍Ö1,"

F

1GH

 

 

This is equivalent to the model of Appendix F by substituting: 

𝑚 = E 𝐴1 cos(𝜔𝑡 + 𝜙1)
F

1GH

 1175 

𝑆 = E Σ1

F

1GH

 

𝑈Ù = E ΛÙ,1

F

1GH
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We therefore deduce that: 

 1180 

𝐼X𝑌, 𝑋Ö$,"Y ≤
𝑓ì�(α) + 𝑓ìª(α)

2  

 

Where 𝛼 = 𝑐_ + ∑ 𝑟_,1	cosX2𝜔𝑡 + 𝜉_,1Y + h(t)F
1 , (i.e. the same as in the case of 

Appendix D where only evoked effects were modelled), 𝑐_, 𝑟_,1, 𝜉_,1 and h(t) are all as 

specified in Appendix D, and the new terms 𝜌' =1185 

�∑ ñ�,uò
uóô �

�∑ ñ��,uò
uóô �

𝑒�
�
ª�éºX∑ ñ��,uò

uóô Y
��
X∑ ñ�,uò

uóô Y�ê» and 𝜌| =

�∑ ñ��,uò
uóô �

�∑ ñ�,uò
uóô �

𝑒�
�
ª�éºX∑ ñ�,uò

uóô Y
��
X∑ ñ��,uò

uóô Y�ê» are both constant with respect to time. 
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