Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes
Date
2021-04Author
Mould, Arne
De Los Angeles, Alejandro
Tunbridge, Elizabeth
Metadata
Show full item recordCitation
David J Wright, Nicola Hall, Naomi Irish, Angela L Man, Will Glynn, Arne Mould, Alejandro De Los Angeles, Emily Angiolini, David Swarbreck, Karim Gharbi, Elizabeth M Tunbridge, Wilfried Haerty. Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes. bioRxiv
Abstract
Alternative splicing (AS) is a key mechanism underlying cellular differentiation and a driver of
complexity in mammalian neuronal tissues. However, understanding of which isoforms are
differentially used or expressed and how this affects cellular differentiation remains unclear. Long read
sequencing allows full-length transcript recovery and quantification, enabling transcript-level analysis
of AS processes and how these change with cell state. Here, we utilise Oxford Nanopore Technologies
sequencing to produce a custom annotation of a well-studied human neuroblastoma cell line and to
characterise isoform expression and usage across differentiation. We identify many previously
unannotated features, including a novel transcript of the voltage-gated calcium channel subunit gene,
CACNA2D2. We show differential expression and usage of transcripts during differentiation, and
identify a putative molecular regulator underlying this state change. Our work highlights the potential
of long read sequencing to uncover previously unknown transcript diversity and mechanisms
influencing alternative splicing
Published online at:
Collections
- Neuroscience [36]