Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders
Citation
Gauri Ang, Laura E. McKillop, Ross Purple, Cristina Blanco-Duque, Stuart N. Peirson, Russell G. Foster, Paul J. Harrison, Rolf Sprengel, Kay E. Davies, Peter L. Oliver, David M. Bannerman & Vladyslav V. Vyazovskiy, 'Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders', Translational Psychiatry (2018) 8:154
Abstract
Sleep EEG spindles have been implicated in attention, sensory processing, synaptic plasticity and memory consolidation. In humans, deficits in sleep spindles have been reported in a wide range of neurological and psychiatric disorders, including schizophrenia. Genome-wide association studies have suggested a link between schizophrenia and genes associated with synaptic plasticity, including the Gria1 gene which codes for the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Gria1−/− mice exhibit a phenotype relevant for neuropsychiatric disorders, including reduced synaptic plasticity and, at the behavioural level, attentional deficits leading to aberrant salience. In this study we report a striking reduction of EEG power density including the spindle-frequency range (10–15 Hz) during sleep in Gria1−/− mice. The reduction of spindle-activity in Gria1−/− mice was accompanied by longer REM sleep episodes, increased EEG slow-wave activity in the occipital derivation during baseline sleep, and a reduced rate of decline of EEG slow wave activity (0.5–4 Hz) during NREM sleep after sleep deprivation. These data provide a novel link between glutamatergic dysfunction and sleep abnormalities in a schizophrenia-relevant mouse model.
Description
Published online at https://doi.org/10.1038/s41398-018-0199-2 . This is an Open Access article under the Creative Commons Attribution (CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).
Collections
- Genetics [6]