Effects of ulotaront on brain circuits of reward, working memory, and emotion processing in healthy volunteers with high or low schizotypy
View/Open
Date
2023-08Author
Capitao, Liliana
Scaife, Jessica
Pal, Deepa
Browning, Michael
Harmer, Catherine J
Metadata
Show full item recordCitation
Francesca Perini, Jadwiga Maria Nazimek, Shane Mckie, Liliana P. Capitão, Jessica Scaife, Deepa Pal, Michael Browning, Gerard R. Dawson, Hiroyuki Nishikawa, Una Campbell, Seth C. Hopkins, Antony Loebel, Rebecca Elliott, Catherine J. Harmer, Bill Deakin & Kenneth S. Koblan .Effects of ulotaront on brain circuits of reward, working memory, and emotion processing in healthy volunteers with high or low schizotypy.Schizophr 9, 49 (2023)
Abstract
Ulotaront, a trace amine-associated receptor 1 (TAAR1) and serotonin 5-HT1A receptor agonist without antagonist activity at dopamine D2 or the serotonin 5-HT2A receptors, has demonstrated efficacy in the treatment of schizophrenia. Here we report the phase 1 translational studies that profiled the effect of ulotaront on brain responses to reward, working memory, and resting state connectivity (RSC) in individuals with low or high schizotypy (LS or HS). Participants were randomized to placebo (n = 32), ulotaront (50 mg; n = 30), or the D2 receptor antagonist amisulpride (400 mg; n = 34) 2 h prior to functional magnetic resonance imaging (fMRI) of blood oxygen level-dependent (BOLD) responses to task performance. Ulotaront increased subjective drowsiness, but reaction times were impaired by less than 10% and did not correlate with BOLD responses. In the Monetary Incentive Delay task (reward processing), ulotaront significantly modulated striatal responses to incentive cues, induced medial orbitofrontal responses, and prevented insula activation seen in HS subjects. In the N-Back working memory task, ulotaront modulated BOLD signals in brain regions associated with cognitive impairment in schizophrenia. Ulotaront did not show antidepressant-like biases in an emotion processing task. HS had significantly reduced connectivity in default, salience, and executive networks compared to LS participants and both drugs reduced this difference. Although performance impairment may have weakened or contributed to the fMRI findings, the profile of ulotaront on BOLD activations elicited by reward, memory, and resting state is compatible with an indirect modulation of dopaminergic function as indicated by preclinical studies. This phase 1 study supported the subsequent clinical proof of concept trial in people with schizophrenia.
Description
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.