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SUMMARY

Working memory (WM) enables temporary storage and manipulation of information,1 supporting tasks that
require bridging between perception and subsequent behavior. Its properties, such as its capacity, have
been thoroughly investigated in highly controlled laboratory tasks.1–8Much less is known about the utilization
and properties of WM in natural behavior,9–11 when reliance on WM emerges as a natural consequence of
interactions with the environment. We measured the trade-off between reliance on WM and gathering infor-
mation externally during immersive behavior in an adapted object-copying task.12 By manipulating the loco-
motive demands required for task completion, we could investigate whether and howWMutilization changed
as gathering information from the environment became more effortful. Reliance on WM was lower than WM
capacity measures in typical laboratory tasks. A clear trade-off also occurred. As sampling information from
the environment required increasing locomotion and time investment, participants relied more on their WM
representations. This reliance on WM increased in a shallow and linear fashion and was associated with
longer encoding durations. Participants’ avoidance of WM usage showcases a fundamental dependence
on external information during ecological behavior, even if the potentially storable information is well within
the capacity of the cognitive system. These foundational findings highlight the importance of using immersive
tasks to understand how cognitive processes unfold within natural behavior. Our novel VR approach effec-
tively combines the ecological validity, experimental rigor, and sensitive measures required to investigate the
interplay between memory and perception in immersive behavior.

RESULTS AND DISCUSSION

In our temporally extended object-copying task (Figure 1A), par-

ticipants (n = 24) copied a model display by selecting realistic ob-

jects from a resource pool and placing them into a workspace

(Video S1). The immersive nature of virtual reality enabled us to

disentangle different sub-parts of the completed task (Figure 1B).

Critically, we varied the model’s location between conditions

(0�, 45�, 90�, or 135� in relation to the workspace), thus manipu-

lating the ‘‘locomotive effort’’ required between encoding objects

in themodel and placing the objects in theworkspace (Figures 1A

and S1)—a composite variable that combines the effort and time

to complete the task. Other than the varying locomotive de-

mands, the task structure remained the same across conditions.

Gaze Provides a Measure of Working-Memory Usage
during Natural Behavior
Placing each object correctly required two features (i.e., types

of information) in memory: its identity (1 feature) and location

(1 feature). Gaze measures provided an implicit proxy of working

memory (WM) utilization (see more in Figure 2A and Video S2).

For example, participants could look at the model before placing

the object, indicating they retained only the identity of the object,

but not its location (1 feature). During another example,

participants could place the object and select and place an addi-

tional object from the resource without having looked back at the

model, indicating they retained the identity and locations of two

objects (4 features).

Surprisingly, in the lowest locomotion condition (0�), partic-
ipants relied on only one feature in memory at a time in the

majority (60%) of cases. They correctly picked up an object

from the resource pool (maintaining identity) but looked again

at the model before placing it (sampling the location informa-

tion). This result demonstrates that WM usage is lower than

WM capacity estimates (�4 items) in typical laboratory

tasks.13–15

Natural Reliance onWM Is LowEvenWhenSearching for
Objects Externally Is Effortful
The reliance onWMwas surprisingly low, even in themost effort-

ful case (135�). Most often, participants used two features in

memory (close to 50%). Compared to the least effortful (0�) con-
dition, the probability of using one feature dropped from 60% to

less than 30% of the cases (Figure 2B; for details, see the Quan-

tification and Statistical Analysis). Using four features also

increased from �1% in the 0� condition to 10% in the 135� con-
dition. Nevertheless, WM was far from loaded to the capacity

derived in laboratory tasks; instead, the results demonstrated a
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fundamental dependence on external information during ecolog-

ical behavior.

WM Utilization Increases Linearly as Searching for
Objects Requires More Locomotion
In order to describe the shape of the relationship between loco-

motive effort andWMutilization, we computed the average num-

ber of WM features used as a function of the different locomotion

conditions (Figure 2C). Generalized linear mixed-model compar-

isons revealed a clear linear relationship between locomotion

and the number of features used, suggesting a shift from external

sampling to relying on WM (for details, see Quantification and

Statistical Analysis). On average, this was a shallow change,

with memory load increasing from approximately one feature in

the 0� condition to two features in the 135� movement trials

(Figure 2C).

The Trade-Off between Using WM versus External
Sampling Affects Performance
In addition to costs related to maintaining features in WM, the

time it takes to encode objects is another important factor in

determining the optimal trade-off between using WM and sam-

pling information from the environment. We found that the time

participants spent viewing the model during the selection of the

to-be-copied objects (Figure 3A) increased systematically as

locomotive effort increased (comparing the lines between

each of the facets of the figure), likely reflecting the increase

in time and distance this information needed to be ‘‘carried’’

(for details, see Quantification and Statistical Analysis). Criti-

cally, within each locomotion condition, dwell times were

longer for trials in which more WM features were used (positive

linear slopes for all conditions). This relationship was quadratic

(except for the line in the 0� condition [first facet], where it was

linear), showing a steep increase in dwell times as participants

moved from 3 to 4 features in memory (Figure 3A). The relation-

ship between encoding duration and WM features utilized (see

also Figure S2B) suggests participants loaded-up more infor-

mation,16 instead of simply using more. This pattern highlights

that, although relying on WM representations may spare loco-

motive effort, loading WM may bring additional costs in terms

of invested time.

To provide a fuller measure of performance outcome resulting

from trading off usingWM versus external information, we calcu-

lated the time participants required to complete each display—

that is the summed duration required to copy the 8 objects

from the model area into the workspace (Figure 3B). Erroneous

placements had to be corrected immediately, and fewer than

3% of copying sequences included errors (Figure S3; for details,

seeQuantification and Statistical Analysis). Therefore, by design,

participants’ performance was evaluated by the speed of their

copying behavior. For each display, we also calculated the

average number of features in WM used. Figure 3B depicts

this relationship as a function of the different locomotion condi-

tions. Unsurprisingly, participants were slower to complete dis-

plays with increasing locomotion demands. However, greater

reliance on WM reduced completion times (significant negative

slopes for all movement conditions), though a significant

quadratic relationship also revealed diminishing returns for

increasing the number of features in memory, particularly when

using more than �2 features. The observed pattern of regularly

sampling information from the environment (i.e., using one

feature) was therefore not the most efficient strategy, and using

more features in WM increased task performance. On the other

hand, encoding more features also becomes taxing in terms of

encoding duration (Figure 3A), leading to diminishing returns

for overall performance.

Figure 1. Object-Copying Task in Virtual Reality

(A) Twenty-four participants copied 8 ‘‘model’’ arrangements of objects, here shown at 45�, by selecting and picking up objects from the ‘‘resource’’ section and

placing them into a ‘‘workspace’’ area (see Video S1). The model’s location varied between conditions (1 run = 14 displays), either 0�, 45�, 90�, or 135� from the

workspace.

(B) Participants could only pick up and carry one object at a time, which imposed a sequential order into the task (for further details, see STAR Methods and

Figure S1). Participants would (1) look at the model area in order to encode the to-be-copied object(s), (2) move to the resources in order to (3) search and select

the object, (4) pick it up, and finally (5) place it in the corresponding location in the workspace.

See also Figure S1 and Video S1.
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Why Is Reliance on WM Low in Natural Behavior?
Laboratory tasks have yielded many views about capacity limits

in WM relating to whether resources are continuous6,17,18 or

discrete7,14,19 and whether capacity is fixed at all.20,21 These

views are moderated by the questions of whether relevant units

are integrated objects or features7,22,23 and whether spatial po-

sition is necessarily encoded along with specific features.24–26

By any of these measures, the estimates of capacity in lab tasks

exceed the estimates we have obtained for the averageWM load

in the natural task presented here. We show that, in natural, im-

mersive behavior, WM is costly,27,28 and its usage emerges in a

shallow, linear fashion as locomotive effort increases.

Our findings can be reconciled with typical lab estimates in

several ways. In classical WM research, objects are briefly

‘‘flashed’’ on a computer screen, whereas in natural behavior,

we usually can decide between looking back to the objects of in-

terest and retaining them in memory. Such sensory-motor deci-

sions have been investigated within the framework of statistical

decision theory,29–31 which emphasizes the importance of

considering costs and benefits—mediated by the underlying

neural reward circuitry32—in the choice of actions. Here, mem-

ory use is weighted against locomotive effort, and depending

on the reliability of the representation, the actor would rely on

the information inmind or update it.33 Looking back can be rather

‘‘cheap,’’ if only a few saccades are required,34–36 but becomes

more costly in an ecological context as we have to move the

head, arms, and body.11,37,38 Further, constrained screen-based

tasks often require participants to remain still and hold gaze on a

single spot. However, eye movements can disrupt visuospatial

WM representations.39 Self-movement as well as the related

computation of changing object coordinates can also reduce ca-

pacity estimates of WM40 and sustained attention.41 Addition-

ally, programming movements in the environment might require

the maintenance of relevant locations in the experimental envi-

ronment, which would further reduce the WM capacity available

for objects. Finally, although the overall capacity of WM is likely

higher then suggested here, only some of these objects might be

prioritized within WM,42–44 and information out of internal focus

may be susceptible to interference when interacting with distrac-

tor objects in the resource area. In sum, resource allocation in

natural tasks can be vastly different from utilizing resources in

laboratory settings, highlighting the need to understand how

cognitive processes unfold within natural behavior.

Using versus Not-Using Memories from Different
Timescales
Although classical laboratory tasks measure the upper bound of

what is possible (i.e., benchmarking), here, we aim to describe

how the usage of this cognitive resource emerges during natural

behavior as a function of locomotive effort—providing ameasure

of howWMcapacity is used12 rather than its maximumpotential.

Using versus not-using memory has been investigated more

thoroughly with respect to long-term memory (LTM) guidance

of visual search.45–53 This literature provides evidence that,

when searching for a target requires only a few fixations, LTM

use can be low, whereas effortful (requiring more time and

distance) searches in immersive environments recruit a more

substantial usage of long-term representations.

Real-world cognition, however, is not restricted to perception,

WM, or LTM operating in isolation. Instead, the content from

these different timescales is integrated to serve adaptive and

purposeful behavior.54 Understanding how information collected

over these different timescales work together or compete to

guide successful adaptive behavior is an exciting prospect and

remains to be addressed in future research. The task we present

here offers the opportunity to address these questions while

taking into account environmental constraints and energetic

costs, thus recognizing—instead of ignoring—the functional

and ecological aspects of cognition.33,55

When Natural Behavior Engages WM
Our novel VR task provides a useful naturalistic setting in which

the observer is required to (1) actively maintain visuospatial rep-

resentations in WM, (2) protect them from the interference of

visual translations (rotating through the environment) and inter-

ference from similar objects (distractor objects in the resource

Figure 2. Utilization of WM Representations

(A) Measuring gaze in virtual reality enabled us to

develop an implicit metric of working-memory utili-

zation (see Video S2). Because participants needed

to sample identity and location information of the to-

be-copied object from the model, we could count

thenumberofWMfeaturesused in the taskbetween

re-fixations of the model. For example, if partici-

pants fixated the model before placing the object,

theyonly used1 feature, that is the identity featureof

that object. If they fixated themodelafterplacing the

object, we counted 2 features used (both identity

and location information were utilized).

(B) Probability of using an increasing number of

WM features as a function of the experimental

condition (i.e., locomotive effort)—see Figure S2A

for results of more than 4 features in WM. Error

bars depict standard error of the mean.

(C) The shape of the relationship between amount of locomotion and number of WM features utilized was linear. For a data-driven visualization of the rela-

tionship, the line in the plot was fit using a nonparametric LOESS smoothing function (thick gray line) with shaded areas representing the 95% confidence

intervals. Solid dots indicate group averages and transparent lines, and dots depict the averages of the twenty-four participants.

See also Figure S2 and Video S2.

ll
OPEN ACCESS

Current Biology 31, 1–6, February 22, 2021 3

Please cite this article in press as: Draschkow et al., When Natural Behavior Engages Working Memory, Current Biology (2020), https://doi.org/
10.1016/j.cub.2020.11.013

Report



area), and (3) manipulate the contents in memory in order to up-

date the computation of changing object coordinates. We further

use (4) realistic novel objects,56 rather than intrinsically confus-

able and hard-to-remember colored blocks,12,57 in order to

adhere more closely to naturalistic constraints. These points

constitute a combination of the challenges that have been a hall-

mark of active WM usage and enable an ecological investigation

of theWMproperties necessary for bridging between perception

and subsequent behavior.

Our novel VR approach provides an ideal starting point for in-

vestigations into the factors andmechanisms that support mem-

ory usage in naturalistic settings. For example, manipulating the

stimuli and their arrangements will inform the role of intrinsic

memorability58–60 when using memory. Further, increasing the

granularity of the eye-movement recordings and changing the

task relevance of location and identity object features7,22–24,26

will show whether using some features is costlier than others.

Finally, directly comparing WM usage estimates from our task

with capacity and precision estimates from standard laboratory

tasks will elucidate the relationship between the upper bounds

of capacity,5 controlling access to WM,61 and the amount of

memory actually used. Such investigations would inform how

memory use is related to individual differences in cognitive ca-

pacities in a broader sense, specifically how natural memory

use relates to IQ and academic attainment62 as well as mental

workload63 in more applied settings.

Conclusions
Our estimates show remarkably low levels of WM utilization in

immersive behavior, even when ‘‘holding information in mind to

guide future behavior’’ is the very essence of the task. We found

reliance on�1 feature in WMwhen locomotive demands were at

their lowest, which increased to an average of �2 features in

memory at the highest locomotive demands we tested. Encod-

ing more features bore a cost, as suggested by viewing times

of the information to be maintained. Although this cost made

the individual copying sequences last longer, it also enabled

more information to be copied in each sequence, which reduced

the overall completion times of the to-be-copied displays. This

increase in efficiency, however, plateaued at �2 to 3 features

in memory, demonstrating the importance of balancing the

reliance on WM with gathering information externally during

immersive behavior. Our novel VR approach effectively com-

bines the ecological validity, experimental rigor, and sensitive

measures required to investigate the interplay between memory

and perception in natural behavior and opens the doors to many

interesting future investigations.
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Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
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B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Apparatus and Virtual Environment

B Procedure and tasks

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Data recording and pre-processing

B Number of features in memory

B Model viewing time

B Display completion time

B Data analysis

B Statistical analysis related to Figure 2B – probability of

using features in memory

B Statistical analysis related to Figure 2C – number of

features in memory

B Statistical analysis related to Figures 3A and S2B –

Model viewing time

B Statistical analysis related to Figure 3B – display

completion time

Figure 3. Trade-Offs between Sampling In-

formation from WM versus from the Envi-

ronment

(A) Average viewing time during the initial viewing

of the to-be-copied objects in the model area, as a

proxy for encoding duration. Viewing times were

longer for trials in which more WM features were

used (positive slopes for all conditions).

Conversely, viewing times also predicted the

number of features used (see Figure S2B). Error

bars represent 95% confidence intervals.

(B) Display completion times (each point is one

display completed by one participant) as a function

of the average number of features used in the given

display, reflecting the performance outcome of

trading off using WM and external information.

Greater reliance on WM reduced completion times

(significant negative slopes for all conditions),

though the quadratic relationship demonstrates that, with higher numbers of features in memory, performance plateaued in this task (for details, see Quantifi-

cation and Statistical Analysis). For a data-driven visualization of the relationship, the lines in the plot were fit using a nonparametric LOESS smoothing function

with shaded areas representing the 95% confidence intervals.

The dots in (A) represent group averages, whereas the dots in (B) depict the data of individual displays. See also Figure S2.
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40. Wolbers, T., Hegarty, M., Büchel, C., and Loomis, J.M. (2008). Spatial up-

dating: how the brain keeps track of changing object locations during

observer motion. Nat. Neurosci. 11, 1223–1230.

41. Thomas, L.E., and Seiffert, A.E. (2010). Self-motion impairsmultiple-object

tracking. Cognition 117, 80–86.

42. Oberauer, K. (2002). Access to information in working memory: exploring

the focus of attention. J. Exp. Psychol. Learn. Mem. Cogn. 28, 411–421.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-four healthy human volunteers participated in the study (mean age = 26.2, range = 18-36, 17 female, all right-handed). All

participants had normal or corrected-to-normal (6 participants used lenses) vision and reported no history of neurological or psychi-

atric disorders. Participants received financial compensation (£10/h) and provided informed consent prior to participating in the

experiment. Protocols were approved by the local ethics committee (Central University Research Ethics Committee #R64089/

RE001).

METHOD DETAILS

Apparatus and Virtual Environment
Participants wore an HTC Vive Tobii Pro VR integration with a built-in binocular eye tracker with an accuracy of approximately 0.5�

visual angle. We tracked gaze position in 3D space at a sampling rate of 90 Hz. Gaze position in 3D space was obtained by intersect-

ing the gaze vector with objects in the environment. The head-mounted display (HMD) consisted of two 10803 1200 pixel resolution

OLED screens (refresh rate = 90 Hz, field-of-view = 100� horizontally 3 110� vertically). Locations of the headset and the hand-held

controller were tracked with sub-millimeter precision using two Lighthouse base stations that emitted infrared pulses, which were

detected by 37 infrared sensors in the HMD and 24 in the controller. Tracking was optimized by an accelerometer and a gyroscope

embedded in the HMD. A trigger button (operated with the index finger) and a grip button (operated with the thumb) on the wireless

controller were used for interacting with the experimental program. By intersecting the controller with a virtual object and holding
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down the trigger button, the participants could pick up objects – releasing the trigger button released the object from the virtual grip.

The virtual environment was presented and rendered with Unity on a high-performance PC running Windows 10 (Figures 1A and

S1). The environment consisted of a 4503 450 cm roomwith a ceiling height of 240 cm. Participants were situated in the center of the

room, with the Model (120 3 60 cm), Workspace (100 3 50 cm) and Resources (120 3 75 cm) surrounding them.

The objects participants handled were cubes, with each side of the cube spanning 10x10 cm. The placeholders in the Model area

and each side of the cube of the objects in the Resource area were overlaid with images from the Novel Object and Unusual Name

Database.56 These stimuli hold the advantage of being naturalistic, while at the same time unfamiliar and difficult to verbalize. Out of a

stimulus pool of 60 objects, 8 objects were randomly selected for the Model area and 16 additional objects were drawn for the Re-

sources, for each display. The location assignment of all objects was pseudo-randomized, so that a specific display arrangement

never repeated across runs for a participant.

Procedure and tasks
Upon arrival, participants were informed that they would perform an object-copying task in which they would have to: (1) find the

objects depicted in the Model within the Resources; (2) pick up these objects and move them into the Workspace to copy the

arrangement in the Model; and (3) complete each display as quickly as possible (with a timeout of 45 s per display).

TheModel contained the configuration of objects to be copied; the Resource contained the objects to be used; and theWorkspace

was the area in which the copied arrangement was assembled (Figures 1A and S1; Video S1). Participants could only pick up and

carry one object at a time with their controller, which imposed a sequential order into the task (Figure 1B). The picked-up object

needed to be placed in the appropriate location of the Workspace. Once the participant successfully placed the object, the location

was highlighted with green contours (Video S1). Red contours would signal to the participant if the wrong location was chosen (Fig-

ure S3). The objects in the Resource would be rendered invisible as long as an object was placed incorrectly in the Workspace, thus

making it impossible for the participant to continue until the object was either placed correctly, or removed from theWorkspace (e.g.,

an incorrect object was moved to begin with). By design, participants performance was evaluated by the speed of their copying

behavior, because erroneous placements had to be corrected immediately and fewer than 3% of copying sequences contained

errors (Figure S3). On average, 1.8% of the sequences contained an identity error (picking up an object which was not contained

in the Model) and 2.9% contained a location error (placing an object on the incorrect field). In case objects fell on the ground during

copying, they would automatically re-spawn in the Resource.

Critically, we varied the Model’s location between runs (0�, 45�, 90�, or 135� in relation to the Workspace), thus manipulating the

‘locomotive effort’ required between encoding objects in theModel and placing the objects in theWorkspace (Figures 1A and S1)) – a

composite variable that combines the effort and time to complete the task. Other than the varying locomotive demands, the task

structure remained the same across conditions.

A short practice session familiarised participants with the HMD, the wireless controller, the testing procedure, and the lab space.

The practice session was identical to the actual task and consisted of copying all objects in 3 displays. Practise continued until all

open questions were resolved.

Participants completed 8 runs of trials split between two sessions. Within each run they reproduced 14 displays, each display con-

taining 8 to be copied objects. The experimental manipulation (0�, 45�, 90�, or 135�) was varied run-wise, so that every run consisted

of trials from a single condition. A mandatory break (approximately 5 minutes) was administered after completing the first four runs

(session 1). During the break participants removed the headset and could rest. In the second session, participants completed four

more runs. Thus, each participant completed 28 displays (copied 224 objects) per condition (0�, 45�, 90�, and 135�). The order of the

conditions was randomized across sessions and participants. The full experiment lasted approximately 90 minutes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data recording and pre-processing
Data from 24 displays across participants were removed due to missing values. All remaining data from 2664 displays were included

in the analysis.

Frame-by-frame data were written to a csv file during recording. For the purpose of the data analysis, we segmented our measures

of interest into sequence. A sequence always started by detecting a gaze sample on the Model and ended with a gaze sample on the

Model. Critically, to qualify as a sequence, the participants must have looked at either theModel or Resources, between two views of

the Model. For example, a sequence could consist of an initial gaze to the Model, followed by a gaze to the Resource, and finally

conclude with another gaze back to the Model. This final gaze sample concludes this sequence and initiates the next sequence.

Number of features in memory
We quantified the number of features in memory during each sequence, according to the actions performed (Figure 2A; Video S2).

Specifically, we considered how many object features (identity, location) were acted upon, before observers’ gaze returned to the

Model for additional encoding. If, for example, the only action that was performed during a sequence was picking up an object

from the Resource, this was counted as a 1-feature sequence. That is, the participant looked at the Model before placing the object.

In a 2-features sequence, for example, an observer not only picked up the object, but also placed it in the Workspace before their

gaze returned to the Model area. If a second object was picked up before looking back to the Model, this would constitute that
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3 features in memory were used, and if the second object was also placed then this would be categorized as a 4-feature sequence,

etc. For each display, participants had to place 8 objects. The overall number of features per display added up to 16 features since

each object contained 2 features: 1 identity + 1 location feature (Figure S2A).

As participants’ behavior in this unconstrained task is not perfectly characterized by this categorization, we also counted cases in

which 0 features were used. This captures cases in which no object was picked up during a sequence (Figure S2A). While this metric

captures occurrences in which participants genuinely looked at the Model, turned to the Resource, and realized that they did not

remember what they are looking for; it is likely also strongly contaminated by positional adjustments, lapses of attention, reorienting,

and other unforeseen idiosyncrasies.

Model viewing time
Model viewing times were derived individually for each sequence. Thus, each viewing time had a corresponding features-in-memory

value.

Display completion time
To calculate display completion time, we summed up the individual sequence completion times for each display.

Data analysis
The descriptions in this section are organized according to the figures in the main text and supplementary materials (see Data and

Code Availability for access to data and code). Analyses were run using the lsr package,70 lme4 package64 and lmerTest65 in the R

statistical programming language66 using RStudio.67 The ggplot2 package68 was used for data visualization and the MASS pack-

age71 for conducting the Box–Cox procedure.69

All mixed-effects models were fitted with the maximum likelihood criterion. After inspecting the distributions of dependent vari-

ables, their residuals, and power coefficient outputs, we transformed the values in order to approximate a normal distribution

more closely – here the Box–Cox procedure suggested a log transformation for all relevant continuous variables. Predictor variables

were z-transformed (scaled and centered) and where relevant higher-order orthogonal polynomials were evaluated (e.g., linear,

quadratic, or cubic).

Statistical analysis related to Figure 2B – probability of using features in memory
Differences between means of conditions were analyzed using planned pairwise t tests. Planned comparisons revealed a significant

difference between the probability values of all neighboring movement conditions, nested within each number of features in memory

(see table below). Only the difference between 90� and 135� for 3-features in memory was not reliable (p = 0.5).

Statistical analysis related to Figure 2C – number of features in memory
Generalized linear mixed-effects models (GLMMs) with a Poisson distribution were used to investigate how the experimental manip-

ulation (from 0� to 135�) predicted the number of features in memory used. The random effects structure included a by-participant

random intercept and a by-participant random slope for the locomotive condition. A model using a third-order polynomial (linear,

quadradic and cubic) demonstrated that an increase in locomotive demands significantly predicted the number of features in mem-

ory, only when modeled with a first order polynomial (linear) fit, b = 24.254, SE = 2.393, z = 10.134, p < 0.001 (compared to quadratic,

p = 0.493 and cubic, p = 0.818). To be exhaustive, we performed model comparisons on an array of plausible models, which are

summarized in the following table.

Row Measure Comparison t df p Cohen’s d Mean Diff 95% CI

1 probability 1 feature: 0� versus 45� 4.381 23 < 0.001 0.894 9.754 5.149, 14.359

2 probability 1 feature: 45� versus 90� 4.626 23 < 0.001 0.944 10.564 5.84, 15.289

3 probability 1 feature: 90� versus 135� 6.475 23 < 0.001 1.322 10.475 7.129, 13.822

4 probability 2 features: 0� versus 45� �4.804 23 < 0.001 0.981 �9.153 �13.094, �5.212

5 probability 2 features: 45� versus 90� �3.375 23 .003 0.689 �7.754 �12.508, �3.001

6 probability 2 features: 90� versus 135� �3.665 23 .001 0.748 �6.598 �10.323, �2.874

7 probability 3 features: 0� versus 45� �5.042 23 < 0.001 1.029 �3.387 �4.777, �1.998

8 probability 3 features: 45� versus 90� �3.064 23 .005 0.625 �2.345 �3.928, �0.762

9 probability 3 features: 90� versus 135� 0.681 23 .503 0.139 0.595 �1.214, 2.405

10 probability 4 features: 0� versus 45� �2.382 23 .026 0.486 �0.875 �1.634, �0.115

11 probability 4 features: 45� versus 90� �3.064 23 .005 0.625 �3.547 �5.942, �1.152

12 probability 4 features: 90� versus 135� �5.63 23 < 0.001 1.149 �5.432 �7.428, �3.436

Each row shows the results of a within-subject paired t-test.
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Statistical analysis related to Figures 3A and S2B – Model viewing time
To analyze viewing durations during the initial viewing of the Model, we restricted our analysis to instances in which between 1 and 4

features in memory were used. We excluded sequences with viewing times below 50 ms and above 2000 ms, which excluded less

than 1% of the data.

Summed initial viewing time of the Model area was added as a predictor to the best fitting GLMMmodeling the number of features

in memory used (section above). Viewing times significantly predicted the number of features used (Figure S2B), b = 0.014, SE =

0.006, z = 2.377, p = 0.017, but did not interact with locomotion, b = 0.007, SE = 0.005, z = 1.337, p = 0.181. The effect of locomotion

remained significant after the inclusion of the new predictor, b = 0.131, SE = 0.011, z = 11.423, p < 0.001.

To investigate how the number of features inmemory as well as locomotion influenced viewing times, we used linear mixed-effects

models (Figure 3A). With respect to the random effects of the models, we started with maximal72 random effects structures which

included by-participant random intercepts and by-participant random slopes for the effect of locomotion, the effect of features in

memory and the interaction of these two. The number of features in memory predictor entered both the fixed and the random effects

structure with a linear, as well as quadratic fit (Figure 3A). Full models often lead to overparameterization and convergence issues.73

We ran a principal component analysis (PCA) of each fitted model’s random-effects variance-covariance estimates to identify over-

parameterization and then removed random slopes that were both (a) not supported by the PCA and (b) did not contribute signifi-

cantly to the goodness of fit as assessed by a likelihood ratio test comparingmodels with andwithout the slope in question. Nomodel

simplification was justified after simplification of the random-effects structure; thus, we report the inferential outcomes of the full

model.

To clarify the interaction (row 5) between locomotion and the number of features in memory (modeled with a quadratic fit), we

calculated separate models for each locomotion condition.

Row Measure Predictor df AIC BIC logLik c2 p

1 features in memory exponential (locomotion) 5 69392 69433 �34691 —– —–

2 features in memory logarithmic (locomotion) 5 69397 69438 �34694 0 1

3 features in memory linear (locomotion) 5 69358 69399 �34674 39.780 < 0.001

4 features in memory quadratic (locomotion) 6 69359 69408 �34674 0.448 .503

5 features in memory cubic (locomotion) 7 69361 69419 �34674 0.052 .820

Each row shows the results from a likelihood ratio procedure comparing each model with the preceding one.

Higher order polynomial fits always included the lower order polynomials.

Row Measure Predictor t df p b SE

1 Viewing time linear (features in memory) 1.600 23.55 .123 1.397 0.087

2 Viewing time quadratic (features in memory) 3.328 23.21 .003 2.890 0.087

3 Viewing time locomotion 11.361 22.63 < 0.001 0.145 0.013

4 Viewing time linear (features in memory): locomotion 0.039 22.37 .97 0.030 0.763

5 Viewing time quadratic (features in memory): locomotion 3.148 24.80 .004 2.032 0.645

Each row shows the results of a predictor variable.

The p-values were calculated with the Satterthwaite’s degrees of freedom method.

Row Measure Predictor t df p b SE

1 Viewing time 0�: linear (features in memory) 3.179 22.31 < 0.001 1.804 0.567

2 Viewing time 0�: quadratic (features in memory) �0.009 3085 .993 �0.003 0.385

3 Viewing time 45�: linear (features in memory) �1.835 2946 .067 �0.757 0.413

4 Viewing time 45�: quadratic (features in memory) 1.069 18.32 .299 0.848 0.793

5 Viewing time 90�: linear (features in memory) 1.072 23.26 .295 0.834 0.779

6 Viewing time 90�: quadratic (features in memory) 4.436 25.88 < 0.001 2.332 0.525

7 Viewing time 135�: linear (features in memory) 3.479 21.95 .002 2.537 0.729

8 Viewing time 135�: quadratic (features in memory) 7.192 1329 < 0.001 3.159 0.439

Each row shows the results of a predictor variable.

The p-values were calculated with the Satterthwaite’s degrees of freedom method.

ll
OPEN ACCESS

e4 Current Biology 31, 1–6.e1–e5, February 22, 2021

Please cite this article in press as: Draschkow et al., When Natural Behavior Engages Working Memory, Current Biology (2020), https://doi.org/
10.1016/j.cub.2020.11.013

Report



Viewing times were longer for trials in which more WM features were used (positive slopes for all conditions).

Statistical analysis related to Figure 3B – display completion time
For analyzing the overall time it took participants to complete a display, we summed the individual sequence completion times for

each display (Figure 3B). We also calculated the average number of features in memory used for each display, enabling us to relate

these measures.

To predict display completion time, the linear mixed-effects model included the predictors locomotion and number of features in

memory. The random-effects structure consisted of by-participant random intercepts and by-participant random slopes for the ef-

fect of locomotion, the effect of features in memory and the interaction of these two. The number of features in memory predictor

entered both the fixed and the random-effects structure with a linear, as well as quadratic fit (Figure 3B).

To clarify the interactions (row 4 and 5) between locomotion and the number of features inmemory, we calculated separatemodels

for each locomotion condition.

Row Measure Predictor t df p b SE

1 Completion time linear (features in memory) �2.735 2.73 .079 �1.166 0.427

2 Completion time quadratic (features in memory) 15.078 14.97 < 0.001 7.820 0.519

3 Completion time locomotion 20.397 21.09 < 0.001 0.129 0.006

4 Completion time linear (features in memory): locomotion �6.840 6.457 < 0.001 �2.918 0.427

5 Completion time quadratic (features in memory): locomotion �10.085 3.334 .001 �3.784 0.375

Each row shows the results of a predictor variable.

The p-values were calculated with the Satterthwaite’s degrees of freedom method.

Row Measure Predictor t df p b SE

1 Completion time 0�: linear (features in memory) �19.90 647.97 < 0.001 �2.513 0.126

2 Completion time 0�: quadratic (features in memory) 8.44 634.74 < 0.001 0.907 0.107

3 Completion time 45�: linear (features in memory) �16.84 666.64 < 0.001 �2.281 0.135

4 Completion time 45�: quadratic (features in memory) 10.13 650.40 < 0.001 1.065 0.105

5 Completion time 90�: linear (features in memory) �6.824 23.29 < 0.001 �2.855 0.418

6 Completion time 90�: quadratic (features in memory) 4.359 119.78 < 0.001 0.841 0.193

7 Completion time 135�: linear (features in memory) �6.532 4.88 .001 �1.115 0.170

8 Completion time 135�: quadratic (features in memory) 8.175 3.91 .001 2.346 0.287

Each row shows the results of a predictor variable.

The p-values were calculated with the Satterthwaite’s degrees of freedom method.
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