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Abstract

Background

A stepped wedge cluster randomised trial (SWCRT) is a multicentred study which allows an

intervention to be rolled out at sites in a random order. Once the intervention is initiated at a

site, all participants within that site remain exposed to the intervention for the remainder of

the study.

The time since the start of the study (“calendar time”) may affect outcome measures

through underlying time trends or periodicity. The time since the intervention was introduced

to a site (“exposure time”) may also affect outcomes cumulatively for successful interven-

tions, possibly in addition to a step change when the intervention began.

Methods

Motivated by a SWCRT of self-monitoring for bipolar disorder, we conducted a simulation

study to compare model formulations to analyse data from a SWCRT under 36 different sce-

narios in which time was related to the outcome (improvement in mood score). The aim was

to find a model specification that would produce reliable estimates of intervention effects

under different scenarios. Nine different formulations of a linear mixed effects model were

fitted to these datasets. These models varied in the specification of calendar and exposure

times.

Results

Modelling the effects of the intervention was best accomplished by including terms for both

calendar time and exposure time. Treating time as categorical (a separate parameter for

each measurement time-step) achieved the best coverage probabilities and low bias, but at

a cost of wider confidence intervals compared to simpler models for those scenarios which

were sufficiently modelled by fewer parameters. Treating time as continuous and including a

quadratic time term performed similarly well, with slightly larger variations in coverage
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probability, but narrower confidence intervals and in some cases lower bias. The impact of

misspecifying the covariance structure was comparatively small.

Conclusions

We recommend that unless there is a priori information to indicate the form of the relation-

ship between time and outcomes, data from SWCRTs should be analysed with a linear

mixed effects model that includes separate categorical terms for calendar time and expo-

sure time. Prespecified sensitivity analyses should consider the different formulations of

these time effects in the model, to assess their impact on estimates of intervention effects.

Introduction

A stepped wedge cluster randomised trial (SWCRT) is a special case of a cross-over cluster ran-

domised trial, in which the direction of cross-over is always from the control condition to the

intervention condition [1]. Although the parallel cluster randomised trial is the gold standard,

the SWCRT design is an appropriate option for large-scale intervention roll-outs when it is

logistically infeasible to deploy the intervention at several clusters simultaneously. In SWCRTs,

the intervention is rolled out at the cluster level, ensuring minimal risk of contamination

between treatment and control subjects. One of the benefits of a SWCRT is that, at each time

step, resources can be concentrated at the cluster where the intervention is being introduced,

rather than resources spread across all intervention clusters simultaneously, as would be the

case in a parallel cluster randomised trial design. A systematic review found that 21 SWCRT

studies published between 2010 and 2014 listed logistical barriers to rolling out an intervention

simultaneously at multiple centres as the reason for choosing the SWCRT design [2].

Particularly if an intervention has performed well during individual level trials, decision

makers may view the intervention as doing more good than harm and may favour a design

where all clusters will be exposed to the intervention at some point [2–4]. Under a parallel

design, some clusters would not have the opportunity to be exposed to the intervention, which

may be viewed as undesirable or unethical. If there is a strong view that the intervention

works, clusters may be inclined to drop out of the study if not randomised to the intervention,

and this has been used as justification for the selection of a SWCRT design in several studies

[2]. The cross-over design is an alternative, but it may not be practical or possible to revert to

“pre-intervention” conditions once the intervention has been introduced. Consequently, a

SWCRT may be prescriptive rather than a preferred trial design, providing an option in which

the intervention can still be tested at the cluster level without the encumbrances of a standard

parallel cluster design.

The implementation of a community health insurance scheme in West Africa is an example

where a SWCRT was used to assess the impact of a community-level intervention [5]. In this

example, an SWCRT design was incorporated into the implementation of a scheme that had

already been approved, allowing the impact on health resource utilisation and household pro-

tection to be assessed. The measurement units were individual households, located within 33

villages and towns (‘clusters’) to which the health insurance scheme was made available at a

rate of 11 clusters per year. Another example of the use of the SWCRT design was a trial that

assessed a feedback intervention aimed at producing sustained improvements in hand-hygiene

compliance across 16 acute care hospitals in England and Wales [6]. The justification for the
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use of this design was a successful pilot, and a desire to reduce contamination and disappoint-

ment effects in hospitals not randomised to the intervention.

In a standard parallel cluster randomised trial, for a given intracluster correlation coeffi-

cient (ICC), it is most efficient to have many small clusters as opposed to a few large clusters

[7]. When the clusters are limited in number, the cluster size needs to increase according to

the ICC to acquire a required power, with larger ICC leading to larger required cluster sizes.

When clusters are few and ICCs large, then the SWCRT design is more efficient than the paral-

lel cluster randomised trial design, owing to each cluster having both non-exposure and expo-

sure to the intervention at some point during the study period [1]. The number of clusters in

SWCRT are usually smaller than typically expected for cluster randomised trials, consistent

with the need to conserve or concentrate resources [1].

SWCRTs generally require data to be collected at each time step in all clusters both before

and after the intervention is introduced. This can be burdensome to trial participants [4],

unless long term monitoring is already in place or data acquisition is not intensive.

In SWCRTs, some clusters will be allocated to the intervention much earlier than others,

and so there will be non-contemporaneous data from the intervention and the control periods.

For this reason, differences in outcomes between the intervention and control periods may be

confounded with “nuisance” factors associated with the outcome which influence how the out-

come changes through time. Examples include changes in disease prevalence or measurement

methods, or outcomes that demonstrate seasonality or a long-term temporal trend for reasons

unrelated to the study. Consequently, this effect of time, which we refer to as “calendar time”

in this study, may need to be accounted for when estimating the effectiveness of interventions

in SWCRTs [8].

An additional time effect relates to the length of time that individuals in different clusters

have been exposed to the effects of the intervention, which we term “exposure time”. In

SWCRTs, exposure time varies by cluster, and as exposure to the intervention may have

either an immediate or a cumulative effect on outcomes, both types of effect may need to be

accounted for in the analysis. However, there has been limited exploration of the way either of

these time effects should be modelled when analysing SWCRT data [4, 8], and between studies

there is great inconsistency in the methods used [9].

The purpose of this simulation study is therefore to compare different formulations of the

linear mixed effects (LME) model to account for time effects in stepped wedge cluster designs.

LMEs account for both the correlation between repeated measurements from the same subject

and the correlation between measurements from subjects in the same cluster, but methods for

incorporating time effects to achieve correct inference about intervention effects are less clear.

For example, time can be incorporated either as a continuous or categorical fixed effect, or via

a random effect that allows for cluster specific intercepts and slopes in the outcome’s response

over time [10].

It is recognised that trial statistical analysis plans may require a precise model formulation

to be specified before any data analysis takes place. It is therefore desirable to identify a model

formulation that performs well in estimating intervention effects in SWCRTs across a range of

scenarios with differing calendar time and exposure time effects. We aim to identify such a

model by fitting different variants of the basic LME to simulated data with known time and

intervention effect parameters.

The paper is structured as follows. In the next section we introduce a motivating example

relating to a trial (‘OXTEXT-7’) of an intervention for improving mood scores in individuals

with bipolar disorder, which was expanded to include other patient groups with mental

health disorders such as depression, substance abuse, anxiety and psychosis. After reviewing
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methodological considerations and a class of models for the analysis of SWCRTs, we perform

a simulation study using a range of scenarios, with parameter values guided by the data

obtained in the OXTEXT-7 trial. We assess the performance of the proposed models in esti-

mating intervention effects under each of these scenarios to identify models that demonstrate

the best performance overall and relate these findings to the trial results. The final section is a

concluding discussion.

Methods

This paper reports the results of the analysis of simulated datasets, and the secondary analysis

of anonymised data from a previously published study. The University of Oxford does not

require ethics approval for a secondary analysis of anonymised data. The study protocol of the

original OXTEXT-7 trial was reviewed and approved by a UK NHS Ethics Committee.

Motivating study

The simulation study was motivated by the OXTEXT-7 trial (ISRCTN16778756) [11]. This

was a SWCRT run within eleven community mental health teams (CMHTs) in the Oxford

Health NHS Foundation Trust. Each CMHT was randomised to a start date for “Feeling Well

with TrueColours” (FWTC), which is an intervention originally aimed at individuals with

bipolar disorder. The design of the study allowed for outcomes to be collected for three months

under the control condition at the beginning of the study and for three months under the

intervention condition at the end of the study over all CMHTs. This intervention makes use of

technology that allows participants to text or email their responses to simple health-related

questions with the aim of monitoring their mood prospectively. FWTC was offered to individ-

uals with bipolar and other related mental health disorders whom the clinician (doctor, nurse,

psychologist, other therapist) felt would benefit from developing self-monitoring and self-

management skills. The intervention comprised two elements: a) self-monitoring of symptoms

via the TrueColours system, and b) patient education about self-monitoring, via the ‘Feeling

Well’ materials. The FWTC is a mood management approach built on the TrueColours plat-

form, which aimed to help people through psychoeducation to learn about factors that could

de-stabilise their mood and what steps the individual themselves could take to improve their

mood stability. Central to such learning is accurate recording of, and feedback about, mood

states.

The primary objective was to determine whether CMHTs which delivered the FWTC

achieved better health outcomes for the participants in their care than teams that were not

delivering the service, as determined by Health of the Nation Outcome Scales (HoNOS) total

score [12]. The use of HoNOS is recommended by the English National Service Framework

for Mental Health and by the UK Department of Health as an outcome to assess severe mental

illness [13]. The instrument consists of 12 items, where each item is scored from 0 (no prob-

lem) to 4 (severe/very severe), and therefore the total score is out of 48. HoNOS total scores of

9 are typical of psychiatric out-patients [14]. The items cover four areas of mental health

related to behaviour, impairment, symptoms and social functioning.

The mean Total HoNOS scores plotted against time since the introduction of the interven-

tion for each CMHT during the OXTEXT-7 study period are presented in Fig 1. The mean

plots suggest that across clusters the scores were lower at the start of the study period than at

the end, with mean scores ranging between 10 and 14 between clusters at the beginning of the

study, and between 10 and 21 at the end of the study with many clusters having means above

14. We used the characteristics of the HoNOS data collected from the OXTEXT-7 participants

to create simulated datasets, as described in detail in the section ‘Simulations’.
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Stepped wedge design characteristics

In the standard stepped wedge design there will be one more time step than there are clusters

(Fig 2). For convenience, these time steps are assumed to be the same time points at which

assessments are made. All clusters start under the control condition, and baseline assessments

are performed on all clusters before the intervention is introduced. One cluster, selected at ran-

dom, is then assigned to receive the intervention at the start of each subsequent time step. The

outcome measures can either be obtained from new participants at each measurement

Fig 1. Mean plots with 95% confidence intervals (C.I.) of the total HoNOS scores plotted against the calendar time

(study months) at each CMHT for the OXTEXT-7 study. Data to the left of the vertical line occurred before the

intervention and data to the right after the intervention was introduced.

https://doi.org/10.1371/journal.pone.0208876.g001
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occasion (cross-sectional SWCRT) or from the same participants at each measurement occa-

sion (cohort SWCRT). In this study we consider only the closed cohort SWCRT, in which

each participant will be exposed to both the control and intervention conditions at different

times and each participant is present from the start to the end of the study period. The analysis

of a cross-sectional SWCRT will be slightly easier as only correlation within the same cluster

needs to be considered, as opposed to a cohort SWCRT which needs to account for both clus-

ter and individual level correlation.

Time

In SWCRTs, outcomes may be related to calendar time and exposure time in different ways.

The outcome may show no trend in relation to either calendar time or exposure time, but the

intervention may cause a step change, represented by a higher mean value (Fig 3a). Alterna-

tively, there could be a trend in relation to calendar time, either linear or non-linear (Fig 3b),

allied to the step change. Additionally, there may be a trend in relation to exposure time, as

illustrated by a change in the gradient, with or without a step change at the time the interven-

tion is introduced (Fig 3c and 3d). The method of analysis needs to be flexible enough to be

able to account for different types of responses over time. In the ‘Simulations’ section we

describe how datasets were simulated with these different responses over time in mind.

Models

In this section we describe the LME models which were considered as candidates for analysing

data from a SWCRT. A summary of mathematical notation is provided in Table 1. We use the

subscript i to denote participants where i = 1,. . ., N, t to denote time steps (calendar time)

where t = 1,. . ., n, and k to denote clusters (mental health trusts) where k = 1,. . ., K. For the

sake of reducing the amount of notation, we assume that the value of calendar time at the tth
time step is equal to t. The notation yitk represents the outcome (such as the HoNOS score) for

participant i at time step t in cluster k, and xtk is a binary indicator for whether the cluster k is

in the intervention at time step t. When we treat time as continuous then yitk is assumed to be

a function of t and so yitk = yitk (t).
The simplest LME model which can be used to analyse data from a SWCRT is:

yitk ¼ b0 þ @xtk þ v0ik þ �itk ð1Þ

Fig 2. Graphical representation of the standard stepped wedge design intervention roll-out.

https://doi.org/10.1371/journal.pone.0208876.g002
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where, β0 is the intercept, @ is the intervention effect, and v0ik is a random effect term, which

can be expressed as:

v0ik ¼ g0k þ h0i

where γ0k is a cluster-specific random intercept, and h0i is a random intercept for the ith partic-

ipant. These random effect components are usually assumed to be normally distributed and

mutually independent, such that v0ik has zero mean and variance s2
n
¼ s2

g
þ s2

h. The random

errors �itk are assumed to be normally and independently distributed, conditional on v0ik, with

mean zero and variance σ2. The covariance matrix of the vector of responses for participant i
then has a compound symmetrical (CS) structure, where the diagonal elements equal s2 þ s2

n

and the off-diagonal elements equal s2
n
.

It is possible to impose a within-subject covariance matrix with an alternative structure

[15]. We consider fitting an autoregressive AR(1) structure as an alternative to the CS

structure.

An alternative approach, which explicitly accounts for a linear trend with respect to calen-

dar time, is [10]:

yikðtÞ ¼ b0 þ @xtk þ tt þ v0ik þ �ijk ð2Þ

Fig 3. Four potential ways that an outcome can change as a function of time. The dashed line represents when the intervention is introduced. See text for

further details. a.) Step change, no time trend, b.) Linear trends in calendar and exposure time, c.) Step change, non-linear trend in calendar time, d.) Step

change, linear trends in calendar and exposure time.

https://doi.org/10.1371/journal.pone.0208876.g003
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where τ is the slope over calendar time, and t is the calendar time, which is treated here as

continuous.

The model proposed by Hussey and Hughes [8] and recommended by Hemming et al [1]

and Barker et al [4] includes instead a categorical variable for calendar time as a fixed effect:

yitk ¼ b0 þ @xtk þ kt þ v0ik þ �itk ð3Þ

where κ = (0, κ2, κ3, . . ., κt, . . ., κn) is a vector of parameters that allows a different calendar

time effect, κt, at each time step t. In Models 2 and 3, @ can be interpreted as a time-averaged

intervention effect.

Models that account for both a step change in the outcome once the intervention is intro-

duced and a change in the response over calendar time can be specified in a number of ways.

A simple approach is to include the interaction between calendar time and intervention, treat-

ing time as either continuous or categorical:

yikðtÞ ¼ b0 þ @xtk þ tt þ oxtkt þ v0ik þ �itk ð4Þ

yitk ¼ b0 þ @xtk þ kt þ φtxtk þ v0ik þ �itk ð5Þ

where @ is the estimate of the intervention effect at the first time step in which the intervention

was available (t = 2), ω is the coefficient for the interaction between the binary indicator for

Table 1. Summary of mathematical notation.

i Participant subscript i = 1, . . ., N
t Time steps (calendar time) t = 1,. . ., n
k Cluster subscript k = 1,. . ., K
yitk Outcome (HoNOS score) for participant i at time step t in cluster k.
yitk(t) Outcome (HoNOS score) for participant i in cluster k as a function of continuous calendar time equal to t.
xtk Binary indicator for whether cluster k is under the intervention condition at time step t.
β0 Intercept of the LME model

@ Intervention effect (coefficient of xtk in the LME model)

v0ik Random effect with mean zero and variance s2
n

γ0k Cluster-specific random intercept with mean zero and variance s2
g

h0i Participant-specific random intercept with mean zero and variance s2
h

�itk Random error with mean zero and variance σ2 conditional on v0ik

τ Slope of calendar time (coefficient of t in the LME model)

κt Coefficient of the binary indicator for categorical time t in the LME model

ω Coefficient for the interaction between the binary indicator for the intervention xtk and continuous calendar

time t
φt Coefficient of binary indicator for interaction between intervention indicator xtk and categorical calendar

time t
dtk Exposure time to intervention at calendar time t for cluster k
ψ Coefficient of continuous exposure time dtk
ξd Coefficient of binary indicator for categorical exposure time d, where d = d|k, t
z Coefficient of quadratic calendar time t2

ρ Within-participant correlation

ICC Intracluster correlation coefficient

r Difference in calendar times between two measurements

μit Sum of fixed effects in LME model

sitk Independent component of participant-level random error

https://doi.org/10.1371/journal.pone.0208876.t001

Analysing stepped wedge cluster randomised trials with mixed effects models

PLOS ONE | https://doi.org/10.1371/journal.pone.0208876 December 13, 2018 8 / 22

https://doi.org/10.1371/journal.pone.0208876.t001
https://doi.org/10.1371/journal.pone.0208876


the intervention xtk and continuous calendar time t, and φt is an estimate of the additional

effect of the intervention at categorical calendar time t, where t = 3,. . ., n-1. φt = 0 when t = 1,

2, n. Practically, this involves creating a set of n-4 variables when t = 3,. . ., n-1 that equals one

when cluster k is under the intervention and zero otherwise. This is to ensure that all model

parameters are identifiable. The intervention is in place for all clusters at time step t = n, and

therefore the difference between the intervention and the control condition cannot be esti-

mated at t = n. In a standard parallel cluster randomised trial, there would be a parameter φn
which would have corresponded to the additional effect of the intervention due to nth calendar

time. In the SWCRT there are no data at the nth calendar time to estimate the outcome under

the control condition, and therefore the parameter φn is incomputable when the effect on the

outcome due the nth calendar time (κn) is estimated as well. As the data available at the nth cal-

endar time are all under the intervention, κn is an estimate of the additional effect on the out-

come due to calendar time n when under the intervention.

Alternatively, models might relate the exposure time, d, to the outcome, as in Fig 3d:

yikðtÞ ¼ b0 þ @xtk þ tt þ cdtk þ v0ik þ �itk: ð6Þ

Here, dk(t) = dtk is the length of time the intervention has been in place in cluster k to which

participant i belongs, between the time of its introduction and time step t. It is equal to zero

while the cluster is under the control condition. The parameter ψ is the model coefficient for

exposure time. The intervention term could be excluded if it is assumed that the intervention

will not cause an immediate change to the outcome (Fig 3c):

yikðtÞ ¼ b0 þ tt þ cdtk þ v0ik þ �itk: ð7Þ

As in Model 3, calendar time and exposure time may be treated as categorical:

yitk ¼ b0 þ @xtk þ kt þ xd þ v0ik þ �itk

where ξ = (0, ξ1, ξ2, . . ., ξd, . . ., ξn−1) is a vector of parameters where ξd = ξd|k,t is the specific

effect of d time steps of exposure to the intervention, where d is determined by cluster k and

time step t. If all clusters start on the control condition at time step 1 then there can be maxi-

mum n-1 time steps under the intervention. When time is treated as categorical, including a

term for the intervention is redundant because intervention is completely nested within expo-

sure time [16]. Therefore, the model simplifies to:

yitk ¼ b0 þ kt þ xd þ v0ik þ �itk: ð8Þ

Model 8 can be considered as a more general version of the Hussey and Hughes formula-

tion [8], where instead of having a single time-averaged intervention effect, there is a different

intervention effect for each level of exposure.

Finally, models might include non-linear time effects. For example, Model 6 might be

extended to:

yikðtÞ ¼ b0 þ @xtk þ tt þ cdtk þ zt
2 þ v0ik þ �itk ð9Þ

where z is the model coefficient for quadratic time.

Simulations

We generated simulated datasets under 36 different scenarios, guided by the methods outlined

in [17], using R statistical software. All scenarios considered a study conducted over 13 months

(time steps) in 12 centres (clusters), where one centre was randomised to the intervention each

month except during the first time step. A cluster-specific ICC of 0.03, as derived from the
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original data, was used to estimate the required sample size for the simulation study, which

was 20 individuals per cluster if there were 12 clusters using the methods outlined in [18]. This

would provide 80% power to detect a difference of 1.2 HoNOS units at an alpha of 5%, assum-

ing a standard deviation of 6.94. To mimic the trial results, the total HoNOS score was simu-

lated to increase through time for most of the scenarios. The repeated measurements from the

same participant in the OXTEXT-7 trial produced an estimate of -0.5 for the correlation

parameter, ρ. We considered both ρ = -0.5 and ρ = 0.5. Within cluster correlation was mod-

elled by means of a random effect. To perform the simulations we used the patient-level and

cluster-level variance components as estimated from the OXTEXT 7 trial data, rather than bas-

ing the simulation on the ICC of 0.03, which was calculated assuming a single clustering level

as required by the sample size estimation method, due to the presence of both patient and clus-

ter-level correlation.

Fixed effect parameters were simulated according to Table 2. Random effects and random

errors were estimated in the same way for all simulated scenarios. The variance components

and correlations are also provided in Table 2. It was assumed that the cluster-level random

Table 2. Parameters used to simulate datasets.

Simulation Parameters

Mean Model
Intercept (β0) = 14.00 units

Intervention effect (@) = 2 OR -2 units

Linear time trend (τ) = 0.25 units per month

Intervention additional time trend (ψ) = 0.15 OR 0.25 OR -0.50 units per month

Non-linear calendar time trend 2sin ðt� 1Þp

12

� �
{for scenarios D5, D6, D25-D30}

such that κ1 2 (0, 0.52, 1.00, 1.41, 1.73, 1.98, 2.00, 1.93, 1.73, 1.41, 1.00, 0.52, 0)

Non-linear calendar time trend 2sin ðt� 1Þp

6

� �
{for scenarios D7, D8, D31-D36}

such that κ2 2 (0, 1.00, 1.73, 2.00, 1.73, 1.00, 0, -1.00, -1.73, -2.00, -1.73, -1.00, 0)

where t 2 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Non-linear exposure time trend sin ðd� 1Þp

12

� �
{for scenarios D25-D30}

such that ξ1 2 (0, 0, 0.26, 0.50, 0.71, 0.87, 0.97, 1.00, 0.97, 0.87, 0.71, 0.50, 0.26)

Non-linear exposure time trend sin ðd� 1Þp

6

� �
{for scenarios D31-D36}

such that ξ2 2 (0, 0, 0.50, 0.87, 1.00, 0.87, 0.50, 0, -0.50, -0.87, -1.00, -0.87, -0.50)

where d 2 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

Fixed Effects Parameterisations for each Scenario

D1, D2: yitk = 14 D19, D20: yik(t) = 14 + 0.25t + 0.25dtk
D3, D4: yik(t) = 14 + 0.25t D21, D22: yik(t) = 14 − 2xtk + 0.25t − 0.50dk
D5, D6: yitk = 14 + κ1t D23, D24: yik(t) = 14 + 0.25t − 0.50dtk
D7, D8: yitk = 14 + κ2t D25, D26: yitk = 14 + 2xtk + κ1t

D9, D10: yitk = 14 + 2xtk D27, D28: yitk = 14 + 2xtk + κ1t + ξ1d
D11, D12: yik(t) = 14 + 2xtk + 0.25t D29, D30: yitk = 14 + κ1t + ξ1d
D13, D14: yik(t) = 14 + 2xtk + 0.25t + 0.15dtk D31, D32: yitk = 14 + 2xtk + κ2t

D15, D16: yik(t) = 14 + 0.25t + 0.15dtk D33, D34: yitk = 14 + 2xtk + κ2t + ξ2d
D17, D18: yik(t) = 14 + 2xtk + 0.25t + 0.25dtk D35, D36: yitk = 14 + κ2t + ξ2d

yitk is the HoNOS score for participant i at time step t in cluster k, xtk is an indicator variable for whether at time step

t cluster k was under the control or intervention condition, t is the calendar time, dtk is the exposure time to the

intervention in cluster k at calendar time t, κ1 and κ2 are sets of parameters corresponding to the non-linear calendar

time coefficients, ξ1 and ξ2 are sets of model parameters for the effects of different non-linear exposure times d to the

intervention.

https://doi.org/10.1371/journal.pone.0208876.t002
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effect had distribution γ0k ~ N(0, 0.962) and the patient-level random effect had distribution

h0i ~ N(0, 4.422). These terms were estimated from the variance components produced from a

LME model fit to the original dataset, specifying nested random effects. We assumed a simple

AR(1) structure for the within-subject covariance matrix, which assumes the same variance for

each time step and that the correlation between measurements from the same individual r
time steps apart equals ρr, where ρ is a correlation parameter. The random error �itk was

assumed to be normally distributed with zero mean and covariance matrix with diagonal ele-

ments equal to σ2 and off-diagonal elements equal to σ2ρr, where r is the difference in calendar

time steps and σ2 was estimated from the original data to be 5.442 and ρ set to be either -0.5 or

0.5. To produce simulated data with this covariance structure, individual observations were

simulated such that

yitk ¼ mit þ v0ik þ r�i;t� 1;k þ sitk

where μit represents the fixed effects, �itk = ρ�i,t−1,k + sitk is the random error for t> 1, �i,1,k ~ N
(0,σ2) and sitk ~ N(0,(1 − ρ2) σ2) is the independent component of the random error. This

rescaled variance for sitk ensures that the total variance from the random error for subject i in

cluster k is equal to σ2 for each t [17].

A full list of the models used to simulate the 36 different scenarios is provided in Table 2.

An example where the simulated HoNOS scores have a linear time effect and both an immedi-

ate intervention effect on the HoNOS score and the time effect changes after the intervention

is introduced is presented in Fig 4. The figure demonstrates that even when the intervention

effect is prominent in the data, it is not easy to distinguish this effect from a plot of the data

over time.

Simulations were performed using the R built-in package stats and parameter estimates

from the original data were determined using the R nlme package. Code for simulating the

data are provided in S1 Appendix.

Analysis

The nine models listed in Table 3, as described in the section ‘Models’, were used to analyse

each of the simulated datasets. The structure of the within-subject covariance matrix was speci-

fied as either CS or AR(1), so in total 18 candidate models were fitted for each of the 36 scenar-

ios. Models were fit by means of maximum likelihood estimation to ensure the Bayesian

information criterion (BIC) could be used for model comparison. The procedure lme from

the nlme statistical software package for R statistical software was used to fit the linear mixed

effects models and the package multcomp to obtain contrast estimates. Code is supplied in

S2 Appendix.

Two intervention effects were considered: the intervention effect at six months exposure to

the intervention, and the time-averaged intervention effect over the whole study period. The

estimated intervention effect was obtained by means of appropriate contrast statements, result-

ing in a linear combination of the model parameters corresponding to the intervention effect,

together with the standard error and confidence interval for the estimate. Models were

assessed based on the coverage probability of the 95% confidence interval of the intervention

effect, the width of the 95% confidence interval of the intervention effect, the bias in estimating

the intervention effect, the mean square error for the overall model fit to the simulate data, and

the BIC assessing the overall fit.

If the intervention and time effects were assumed independent, such as in Models 1, 2 and

3, then the intervention effect at six months exposure and the time-averaged intervention

effect would be equal to the parameter estimate for the intervention (@). For those models with
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continuous exposure time (Models 6 and 9), the intervention effect after six months exposure

would be equal to @ + 6ψ and equal to 6ψ for Model 7. As this corresponds to half of the total

possible exposure time in the study (median of the set for d 2 {0,2,. . .,12}), the time-averaged

intervention effect is the same. For Model 8, where exposure time is categorical, the interven-

tion effect at six months exposure would be the corresponding coefficient for exposure time

d = 6 (ξ6), and the time-averaged intervention effect is the average of all the model coefficients

for exposure time. The models with the interaction term (Models 4 and 5) provide a model for

Fig 4. The simulated data under scenario D17: yik(t) = 14 + 2xtk + 0.25t + 0.25dtk. The means and 95% confidence

intervals are plotted against the time since the intervention was introduced. Data to the left of the vertical line occurred

before the intervention and data to the right after the intervention was introduced.

https://doi.org/10.1371/journal.pone.0208876.g004
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the outcome under the control condition over the whole study period, and likewise for the out-

come under the intervention condition. This model implies that the intervention effect at a

point in time is different to other times because the outcome responds to the intervention dif-

ferently at each time point, and not because of a certain length of exposure to the intervention.

To get the intervention effect after six months exposure, we have to assume that this would be

the intervention effect as estimated for six months into the study period, and would be calcu-

lated as @ + 6ω for Model 4 and @ + φ6 for Model 5. The time-averaged intervention effect

would be calculated half-way through the study period, which would be at a calendar time of 7

months (@ + 7ω) for Model 4 (median of the set for j 2 {1,2,. . .,13}), and would be calculated

as the sum of the intervention effect plus the mean of all the interaction coefficient terms for

Model 5.

For each fitted model and for each simulated scenario, the coverage probability of the 95%

confidence interval was calculated as the proportion of model fits where the confidence

Table 3. Model structures for linear mixed effects models fitted to simulated datasets.

No time:
yitk = β0 + @xtk + v0ik + �itk (Model 1)

Intervention effect at six months exposure: @

Time-average intervention effect: @

Time Continuous:
yik(t) = β0 + @xtk + τt + v0ik + �ijk (Model 2)

Intervention effect at six months exposure: @

Time-average intervention effect: @

yik(t) = β0 + @xtk + τt + ωxtkt + v0ik + �itk (Model 4)

Intervention effect at six months exposure: @ + 6ω
Time-average intervention effect: @ + 7ω
yik(t) = β0 + @xtk + τt + ψdtk + v0ik + �itk (Model 6)

Intervention effect at six months exposure: @ + 6ψ
Time-average intervention effect: @ + 6ψ
yik(t) = β0 + τt + ψdtk + v0ik + �itk (Model 7)

Intervention effect at six months exposure: 6ψ
Time-average intervention effect: 6ψ
yik(t) = β0 + @xtk + τt + ψdtk + zt2 + v0ik + �itk (Model 9)

Intervention effect at six months exposure: @ + 6ψ
Time-average intervention effect: @ + 6ψ
Time Categorical:
yitk = β0 + @xtk + κt + v0ik + �itk (Model 3) [8]

Intervention effect at six months exposure: @

Time-average intervention effect: @

yitk = β0 + @xtk + κt + φtxtk + v0ik + �itk (Model 5)

Intervention effect at six months exposure: @ + φ6

Time-average intervention effect: @ þ 1

10
φ

3
þ φ

4
þ � � � þ φ

12

� �

yitk = β0 + κt + ξd + v0ik + �itk (Model 8)

Intervention effect at six months exposure: ξ6
Time-average intervention effect: 1

12
x1 þ � � � þ x12ð Þ

The random effects, v0ik, and random errors, �itk, are specified in the same way for each of the nine models, assuming

either a CS structure for the within-subject variance-covariance matrix or an AR(1) structure. Therefore a total of 18

different model configurations were considered.

https://doi.org/10.1371/journal.pone.0208876.t003
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interval for the intervention effect contained the true value. Ideally, the coverage probability

should be close to 95%. The confidence interval width, the MSE, and BIC were computed and

their means obtained for each model fit over each set of 1000 simulations.

The nine candidate models were also fitted to the data from the OXTEXT-7 motivating

example. The intervention effect after six months exposure time and time-averaged interven-

tion effect were estimated from each model fit, and the overall model fit was assessed by means

of the BIC statistic.

Results

Simulation study

The coverage probabilities for the intervention effect at six months exposure for each model

fitted to each simulated scenario are provided in Fig 5, with the mean intervention effect esti-

mates over all simulated datasets within each scenario provided in the tables in S3 Appendix.

Model 8 had coverage probabilities close to 95% for all scenarios. Model 9 had coverage proba-

bilities close to 95% except for those scenarios with a non-linear intervention effects (D27-D30

and D33-D36), where the coverage probabilities were lower than 95% but all close to or above

90%. Model 6 had similar coverage probabilities to Model 9, except for poor coverage for sce-

narios D5 and D6, and scenarios D25 to D30, therefore performing poorly for all scenarios

where time was simulated as half a sinusoid cycle over the full study period. Models 2 and 3,

which treated the intervention and calendar time independently, had coverage probabilities

close to 95% only for those scenarios where time and the intervention effect were simulated as

independent, and had poor coverage otherwise. Model 5 had poor coverage for all scenarios

simulated with an effect of exposure time and had coverage probabilities that were higher than

95% for all other scenarios. Model 4, with continuous interaction term, had poorer coverage

than Model 2, which treated time and the intervention effect independently. Model 7, which

ignored the immediate effect of the intervention, and Model 1, which ignored time, had poor

coverage probabilities for most scenarios.

When the structure of the covariance matrix of the within-subject observations was speci-

fied as AR(1), coverage probabilities were very similar and there were no differences in the

estimates of the intervention effect after six months exposure, or any of the fixed effects model

parameters, compared with those for the same mean model under the CS covariance structure

(Tables J-R in S3 Appendix). Similar patterns in the coverage probabilities for the time-aver-

aged intervention effect estimates were obtained. These plots are provided in S4 Appendix.

The biases in the intervention effect at six months exposure were close to zero across all sce-

narios for Models 8 and 9 (Fig 6), with Model 9 showing small biases for scenarios with non-

linear intervention effects over time (D27-D30 and D33-D36). Model 6 achieved a similar bias

close to zero for most scenarios, with exceptions for D5, D6, D25 to D26, as for the coverage

probabilities. Models with interaction terms had relatively large biases for those scenarios with

simulated exposure time effects. The width of the confidence intervals for Models 8 and 9 were

similar, smaller than for Model 7, which had the widest intervals and relatively large biases, but

wider than for Model 6. For each fitted model, the width of the confidence intervals did not

differ between scenarios. As expected, models with fewer parameters, and therefore requiring

fewer degrees of freedom to estimate parameters, had narrower confidence intervals for the

intervention effects.

Similar trends in bias and confidence interval widths were observed for the time-averaged

intervention effect (Fig 7). A notable exception is the bias for Model 8, which had small, but

non-zero, biases for scenarios D13 to D24, when exposure time was modelled as linear,
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whereas biases were still close to zero for Models 6 and 9. These non-zero biases were still

smaller compared with Models 2 and 3, which attempt to estimate a single time-averaged

intervention effect. Model 9 had small positive biases for scenarios D27 to D30 and D30 to

D36 when the intervention effect was modelled as non-linear over time.

Fig 5. The heat map shows the coverage probability of the intervention effect at six months exposure for the nine fitted models with CS correlation

structure. The heat map was very similar when the AR(1) structure was specified and for the time-averaged intervention effect. Values at the bottom of each

column show the average coverage probability for each fitted model and the average width of the confidence interval for the intervention effect. Odd-numbered

scenarios are simulated with ρ = -0.5 and even-numbered scenarios have ρ = 0.5.

https://doi.org/10.1371/journal.pone.0208876.g005
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When considering the overall fit of the model to the simulated data, across all models the

MSEs were smaller for scenarios simulated with positive within-subject correlation compared

with those with negative correlation (Fig 8). Model 8 consistently had the lowest mean MSEs

across all scenarios (see Table I in S3 Appendix). Model 9 had similar MSEs, and smaller mean

BICs, except for scenarios D31 to D36, which were simulated with a time effect described by a

full sinusoid over the study period. Model 6 had larger MSEs compared with Model 9 across

all scenarios, but smaller BIC values when time was linear and larger BIC values when time

was sinusoidal. Compared to the variations in bias between fitted models, the variations in

MSEs were smaller.

Motivating example

The nine model formulations were fitted to the original OXTEXT-7 data. These results are pre-

sented in Table 4. Although not statistically significant, the intervention effects differ in sign

and magnitude depending on the model selected to fit to the data.

The model which performed the best in the simulation study (Model 8) provided a point

estimate of the intervention effect at six months exposure of -0.59, with a large standard error

of 0.77; almost four times the standard error of the simplest model. This is consistent with

what was observed in the simulation study, where the standard error of the intervention effect

Fig 6. Plot of mean bias and mean 95% confidence interval width over all datasets within each scenario for each fitted model for the estimate of the intervention

effect at six months exposure.

https://doi.org/10.1371/journal.pone.0208876.g006
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depended primarily on the number of parameter estimates required. The BIC statistic for this

model was the lowest, which is consistent with the model fits to the simulated data. The time-

averaged treatment effect for Models 8 and 9 are similar to that obtained for Model 3, which is

the analysis that had been specified in the protocol for this study.

Discussion and conclusion

Our simulation study demonstrates that SWCRT scenarios exist such that when LMEs with

simple formulations for time, which are typical for parallel cluster randomised controlled tri-

als, are fitted to data, biased intervention effects with poor coverage of the true intervention

effect result. Complex temporal trends in the outcome can arise due to factors outside of the

trial, and for this reason the stepped wedge design should only be considered when the out-

come is well understood and when the parallel CRT design is infeasible.

LMEs with complex terms for calendar and exposure time consistently obtained estimates

that were less biased and had 95% confidence intervals with coverage close to 95%. The disad-

vantage is that where simpler formulations for time were sufficient, the confidence intervals

for the treatment effect were wider.

Model 8 consistently had better coverage probabilities, low bias and better BIC statistics

compared with other fitted models for all scenarios considered in this study. This model can

Fig 7. Plot of mean bias and mean 95% confidence interval width over all datasets within each scenario for each fitted model for the estimate of the time-

averaged intervention effect.

https://doi.org/10.1371/journal.pone.0208876.g007
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be viewed as a modification of the Hussey and Hughes model [8] that allows the intervention

effect to differ for each exposure time. The intervention effect at a specific amount of exposure

time can easily be determined from the estimated parameters, as well as the time averaged

intervention effect through the use of a linear combination of the parameter estimates. As

Fig 8. Plot of the mean of the MSE (mean square error) and mean BIC over all datasets within each scenario for each fitted model and where fitted models have

assumed CS correlation structure.

https://doi.org/10.1371/journal.pone.0208876.g008

Table 4. Estimates of the treatment effect after six months exposure time to the intervention for the original OXTEXT-7 SWCRT data.

Fitted Model Intervention effect after six months

exposure (SE)

p-value Time-averaged intervention

effect (SE)

p-value BIC

yitk = β0 + @xtk + v0ik + �itk (Model 1) 0.33 (0.20) 0.096 0.33 (0.20) 0.096 30384.8

yik(t) = β0 + @xtk + τt + v0ik + �ijk (Model 2) 0.11 (0.33) 0.743 0.11 (0.33) 0.743 30376.5

yik(t) = β0 + @xtk + τt + ωxtkt + v0ik + �itk (Model 4) 0.22 (0.43) 0.611 0.19 (0.38) 0.625 30384.8

yik(t) = β0 + @xtk + τt + ψdtk + v0ik + �itk (Model 6) -0.08 (0.45) 0.855 -0.08 (0.45) 0.855 30384.6

yik(t) = β0 + τt + ψdtk + v0ik + �itk (Model 7) -0.19 (0.40) 0.632 -0.19 (0.40) 0.632 30376.4

yik(t) = β0 + @xtk + τt + ψdtk + zt2 + v0ik + �itk (Model 9) 0.09 (0.62) 0.147 0.09 (0.62) 0.147 30392.9

yitk = β0 + @xtk + κt + v0ik + �itk (Model 3) [8] 0.18 (0.37) 0.637 0.18 (0.37) 0.637 30483.7

yitk = β0 + @xtk + κt + φtxtk + v0ik + �itk (Model 5) -0.28 (0.81) 0.731 0.62 (0.83) 0.454 30375.9

yitk = β0 + κt + ξd + v0ik + �itk (Model 8) -0.59 (0.77) 0.446 0.24 (0.66) 0.717 30370.9

https://doi.org/10.1371/journal.pone.0208876.t004
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avoiding biased estimates is a priority, we therefore recommend that in the absence of any

information about the effect of time on the outcome, this model should be specified for the

analysis of SWCRT data.

Model 9, which treated time as continuous with an additional term for quadratic time,

obtained similar biases compared with Model 8, but tended to have coverage probabilities that

were slightly further from the required 95% level. When non-linear effects of time were simu-

lated, we considered a sine wave with a single peak during the study period and a sine wave

with a peak and a trough. Model 9 with a quadratic term for time could approximate the sce-

narios with a single turning point, but performed less well when the effect over time had two

turning points. The appropriateness for additional polynomial terms for time will be context-

specific but should be considered if degrees of freedom are limited. We only considered simple

quadratic function of time, but other polynomial functions for time could be fitted.

Our simulation study confirmed that a simple model which ignores the effect of time leads

to confounding between the effect of time and the effect of the intervention and should there-

fore be avoided. Models treating time and the intervention as independent, such as the Hussey

and Hughes model [8], consistently underestimated the effect of the intervention when the sce-

nario had a simulated exposure time effect, even when the effect of interest was the time-aver-

aged intervention effect.

Models including an interaction term between the intervention and calendar time misspe-

cify the mean model for data under a SWCRT design and should also be avoided. Moreover,

when calendar time is included as a categorical variable, the design matrix is rank-deficient,

leading to some of the interaction terms being incomputable. Software such as SAS Proc

Mixed will allow these models to be estimated and automatically discard redundant parame-

ters, but when fitted with R, the user needs to carefully specify the interaction terms to be esti-

mated to allow the model to converge. Although calendar time is a way of accounting for all

known and unknown factors prevailing at the study centres, which may change during the

study period, such as staffing levels or resource availability, modelling the intervention effect

in such a way that it depends on these calendar time parameters limits its generalisability. Esti-

mates related to calendar time should not be extrapolated beyond the trial.

Misspecification of the mean structure of the temporal effect had a much larger effect on

the estimate of the intervention effect than did misspecification of the correlation structure.

Statistical analysis plans should be flexible enough to allow for different formulations of time,

which may be non-linear. Sensitivity analyses which allow the effect of time to be explored

could be included in the statistical analysis plan, provided this is done in a way that avoids

‘cherry-picking’ the model that demonstrates the best intervention effect. Another way to pro-

ceed would be to first model data from the control condition only, so that the specification of a

calendar time model can be obtained without knowledge of any intervention effects. A model

with an appropriate parametric form could then be used in the full trial analysis. This approach

would benefit from further research.

A limitation of our simulation study is that only a limited number of scenarios were consid-

ered. However, the scenarios are typical of what might be observed after an intervention is

introduced to a new setting. We focused on linear terms for time, but more complex parame-

terisations of time could also be considered, such as the Ornstein–Uhlenbeck process for

modelling the time effect [19]. This allows for correlated within-subject errors, allows the vari-

ance to change over time, and can be fitted to unbalanced datasets.

In this study we do not consider the effect of an imbalance in time-varying confounders

between clusters randomised early to the intervention and those who start late. This could

potentially lead to biased results, even though each cluster acts as its own control, and
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particularly when the number of clusters is small—a common issue in SWCRTs [20]. Research

is in progress to inform the minimum number of clusters for SWCRTs [20].

Future work on the SWCRT study design should consider how to assess goodness-of-fit,

particularly in relation to time effects. Sample size is another important consideration and

should be large enough so that the model can untangle the effects of intervention and time [1,

21]. Not accounting for time effects when performing the sample size calculation will result in

studies that are grossly underpowered [21–22]. This simulation study shows that statistical

models alone cannot be used to determine intervention effects, as factors outside of the trial

may lead to complex changes in the outcome over time, which may not always be resolved by

the model. Rather these issues should be addressed in the design of the study as far as possible

to ensure that a statistical model has the best chance of estimating the intervention effect of

interest.
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mised community-based trials: An application to the study of the impact of community health insurance.

Health Res Policy Syst. 2008; 6: 10. https://doi.org/10.1186/1478-4505-6-10 PMID: 18945332

6. Fuller C, Michie S, Savage J, McAteer J, Besser S, Charlett A, et al. The Feedback Intervention Trial

(FIT)—Improving hand-hygiene compliance in UK healthcare workers: A stepped wedge cluster rando-

mised controlled trial. PLoS One. 2012; 7(10): e41617. https://doi.org/10.1371/journal.pone.0041617

PMID: 23110040 BMJ. 2017;

7. Hemming K, Eldridge S, Forbes G, Weijer C, Taljaard M. How to design efficient cluster randomised tri-

als. 2017; 358:j3064. https://doi.org/10.1136/bmj.j3064 PMID: 28710062

8. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp

Clin Trials. 2007; 28: 182–91. https://doi.org/10.1016/j.cct.2006.05.007 PMID: 16829207

9. Brown CA, Lilford RJ. The stepped wedge trial design: a systematic review. BMC Med Res Methodol.

2006; 6: 65. https://doi.org/10.1186/1471-2288-6-54 PMID: 17092344

10. Hedeker D, Gibbons RD. Longitudinal Data Analysis. John Wiley & Sons, New Jersey; 2006.

11. Bilderbeck A, Price J, Hinds C, Voysey M, Nickless A, Geddes J, et al. OXTEXT: The development and

evaluation of a remote monitoring and management service for people with bipolar disorder and other

psychiatric disorders. NIHR Report for Programme Grants for Applied Research Programme (Refer-

ence Number RP-PG-0108-10087); 2015.

12. Wing J, Curtis RH, Beevor A. Health of the Nation Outcome Scales (HoNOS). Glossary for HoNOS

score sheet. Br J Psychiatry. 1999; 174 (5): 432–434. https://doi.org/10.1192/bjp.174.5.432

13. Twomey C, Prina AM, Baldwin DS, Das-Munshi J, Kingdon D, Koeser L, et al. Utility of the Health of the

Nation Outcome Scales (HoNOS) in predicting mental health service costs for patients with common

mental health problems: Historical cohort study. PLoS One. 2016; 11(11): e0167103. https://doi.org/10.

1371/journal.pone.0167103 PMID: 27902745

14. Audin K, Margison FR, Clark JM, Barkham M. Value of HoNOS in assessing patient change in NHS psy-

chotherapy and psychological treatment services. Br J Psychiatry. 2001; 178, 561–566. PMID:

11388975

15. Diggle PJ, Heagerty PJ, Liang K, Zeger SL. Analysis of Longitudinal Data. 2nd Ed. Oxford University

Press, Oxford, UK; 2002.

16. Fok CCT, Henry D, Allen J. Research designs for intervention research with small samples II: stepped

wedge and interrupted time-series designs. Prev Sci. 2015; 16: 967–977. https://doi.org/10.1007/

s11121-015-0569-4 PMID: 26017633

Analysing stepped wedge cluster randomised trials with mixed effects models

PLOS ONE | https://doi.org/10.1371/journal.pone.0208876 December 13, 2018 21 / 22

https://doi.org/10.1136/bmj.h391
http://www.ncbi.nlm.nih.gov/pubmed/25662947
https://doi.org/10.1186/s13063-015-0839-2
https://doi.org/10.1186/s13063-015-0839-2
http://www.ncbi.nlm.nih.gov/pubmed/26278881
https://doi.org/10.1016/j.jclinepi.2010.12.003
http://www.ncbi.nlm.nih.gov/pubmed/21411284
https://doi.org/10.1186/s12874-016-0176-5
https://doi.org/10.1186/s12874-016-0176-5
http://www.ncbi.nlm.nih.gov/pubmed/27267471
https://doi.org/10.1186/1478-4505-6-10
http://www.ncbi.nlm.nih.gov/pubmed/18945332
https://doi.org/10.1371/journal.pone.0041617
http://www.ncbi.nlm.nih.gov/pubmed/23110040
https://doi.org/10.1136/bmj.j3064
http://www.ncbi.nlm.nih.gov/pubmed/28710062
https://doi.org/10.1016/j.cct.2006.05.007
http://www.ncbi.nlm.nih.gov/pubmed/16829207
https://doi.org/10.1186/1471-2288-6-54
http://www.ncbi.nlm.nih.gov/pubmed/17092344
https://doi.org/10.1192/bjp.174.5.432
https://doi.org/10.1371/journal.pone.0167103
https://doi.org/10.1371/journal.pone.0167103
http://www.ncbi.nlm.nih.gov/pubmed/27902745
http://www.ncbi.nlm.nih.gov/pubmed/11388975
https://doi.org/10.1007/s11121-015-0569-4
https://doi.org/10.1007/s11121-015-0569-4
http://www.ncbi.nlm.nih.gov/pubmed/26017633
https://doi.org/10.1371/journal.pone.0208876


17. Song P, Xue J, Li Z. Simulation of longitudinal exposure data with variance-covariance structures based

on mixed models. Risk Anal. 2013; 33: 469–479. https://doi.org/10.1111/j.1539-6924.2012.01869.x

PMID: 22817762

18. Hemming K, Girling A. A menu-driven facility for power and detectable-difference calculations in

stepped-wedge cluster-randomized trials. The STATA J. 2014; 14(2): 363–380.

19. Hughes RA, Kenward MG, Sterne JAC, Tilling K. Estimation of the linear mixed integrated Ornstein–

Uhlenbeck model. J Stat Comput Simul. 2017; 87(8): 1541–1558. https://doi.org/10.1080/00949655.

2016.1277425 PMID: 28515536

20. Taljaard M, Teerenstra S, Ivers NM, Fergusson DA. Substantial risks associated with few clusters in

cluster randomized and stepped wedge designs. Clinical Trials. 2016; 13(4): 459–463. https://doi.org/

10.1177/1740774516634316 PMID: 26940696

21. Hooper R, Teerenstra S, de Hoop E, Eldridge S. Sample size calculation for stepped wedge and other

longitudinal cluster randomised trials. Stat Med. 2016; 35(26): 4718–4728. https://doi.org/10.1002/sim.

7028 PMID: 27350420

22. Baio G, Copas A, Ambler G, Hargreaves J, Beard E, Omar RZ. Sample size calculation for a stepped

wedge trial. Trials. 2015; 16: 354. https://doi.org/10.1186/s13063-015-0840-9 PMID: 26282553

Analysing stepped wedge cluster randomised trials with mixed effects models

PLOS ONE | https://doi.org/10.1371/journal.pone.0208876 December 13, 2018 22 / 22

https://doi.org/10.1111/j.1539-6924.2012.01869.x
http://www.ncbi.nlm.nih.gov/pubmed/22817762
https://doi.org/10.1080/00949655.2016.1277425
https://doi.org/10.1080/00949655.2016.1277425
http://www.ncbi.nlm.nih.gov/pubmed/28515536
https://doi.org/10.1177/1740774516634316
https://doi.org/10.1177/1740774516634316
http://www.ncbi.nlm.nih.gov/pubmed/26940696
https://doi.org/10.1002/sim.7028
https://doi.org/10.1002/sim.7028
http://www.ncbi.nlm.nih.gov/pubmed/27350420
https://doi.org/10.1186/s13063-015-0840-9
http://www.ncbi.nlm.nih.gov/pubmed/26282553
https://doi.org/10.1371/journal.pone.0208876

