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Abstract

Amyloid-beta peptide (AB) is the primary component of water-insoluble extracellular plaques, one of the
critical hallmarks of Alzheimer's disease (AD). Matrix metalloproteases (MMPs) are broad-spectrum
proteases with diverse functions, including interactions with AB. Here we report single molecule
measurements of MMP1 dynamics on AB-induced aggregates by calculating Forster Resonance Energy
Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains. We show that the
two domains of MMP1 prefer closed conformations on AB-induced aggregates, in contrast to the
preference for open conformations on collagen fibril, fibrin, and alpha-synuclein aggregates. We
approximated the MMP1 dynamics by a two-state Poisson process and determined the kinetic rates of
interconversion between the two states from histograms and correlations of FRET values. We performed
molecular docking of MMP1 with AB using ClusPro, simulated MMP1 dynamics using different docking
poses, and matched the experimental and simulated interdomain dynamics to identify an appropriate
pose. We used simulations to create a two-dimensional map of correlations between every pair of MMP1
residues, which shows allosteric communications between the two MMP1 domains. We calculated a Gray
Level Co-occurrence Matrix from the two-dimensional map of correlations and quantified MMP1
fluctuations by Shannon entropy. We identified the allosteric residues in the hemopexin domain by
identifying residues having strong correlations with the catalytic motif residues. We identified that the
residues 1364, G369, P409, G410, and D418 in MMP1 have AB-specific allosteric correlations with the
MMP1 catalytic motif by comparing residues for free and AB-bound MMP1. We used these AB-specific
allosteric residues to select small molecule ligands after the virtual screening of molecules against ApB-
bound MMP1. Molecular understanding of interactions between MMP1 and AB-induced aggregates and
identification of substrate-specific allosteric residues may enable controlling MMP1 function selectively
on AB.

Introduction

Extracellular amyloid plaques, a key hallmark of Alzheimer's disease (AD) (1), are primarily composed of
AB (2). Proteolytic cleavage of amyloid precursor protein (APP) a-secretase leads to non-amyloidogenic
fragments, neuroprotection, and memory enhancement (3). With age, non-specific fragmentation by -
secretase and y-secretase becomes prevalent, and amyloidogenic fragments, including AB(1-40) and
AB(1-42), appear in the extracellular space (4). Soluble monomers, polymers, and fibrils of extracellular
AB form the amyloid plaques (5, 6).

MMPs are one class of AB-degrading enzymes (7). Several MMPs in the 23-member human MMP family
(8) interact with AB (9) and have relevance in AD and neurodegeneration (10). MMPs are broad-spectrum
proteases with diverse proteolytic (11, 12) and non-proteolytic intracellular functions (13). MMPs are
ubiquitous throughout the human body and are found in extracellular space (14), intracellular space (15),
blood (16), intestine (17), and brain (18). The implication of MMPs AD and PD is significant because
tetracycline (19, 20), an inhibitor of MMPs (21), has shown therapeutic potential in AD (22) and PD (23).
In the context of AD, an enhanced MMP1 activity correlates with dysfunction of the blood-brain barrier
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(24). MT-MMP1 cleaves AB between H14 and Q15 (25). MMP9 is known to degrade AR fibrils in vitro, AR
plaques in situ, and AB in vivo (26—30).

As stated above, degradation of AB by MMPs may lead to aggregation. Intriguingly, the broad-spectrum
activity of MMPs may also help degrade existing AB-induced aggregates. However, how water-soluble
MMPs interact with water-insoluble AB-induced aggregates is unclear. Since standard biochemical
assays are not suitable for studying water-insoluble substrates, we have developed a single molecule
tracking approach and weight-based activity assay. We focused on MMP1, a well-studied MMP of the 23-
member human MMP family, to study how MMP1 interacts with AB-induced aggregates at the single
molecule level. Since MMP1 interacts with diverse substrates, we need to put the insights into AB-MMP1
interactions in the broader context of MMP1 promiscuity for substrate-specific targeting of MMPs in the
future. The catalytic domain sequence across the MMP family is very similar, but the hemopexin domain
sequence varies (31, 32), suggesting a role of communications in substrate diversity and specificity (12,
33). Recently, we reported activity-dependent MMP1 dynamics and allosteric communications on type-1
collagen fibrils (34), fibrin (35), and alpha-synuclein-induced aggregates. We found that functionally-
relevant conformations on the three substrates are open MMP1 conformations with the catalytic and
hemopexin domains well-separated. These open conformations often accompany a larger catalytic
pocket opening of MMP1, facilitating the substrates to get closer to the active site of MMP1. First,
however, we need to investigate whether the preference for the open conformations of MMP1 is valid for
all substrates and whether allosteric communications are substrate-specific.

This paper reports measurements and analyses of MMP1 interdomain dynamics on water-insoluble ApB-
induced aggregates using single molecule FRET (smFRET). We mutated S142 and S366 to CYS for
labeling with Alexa555 and Alexa647, a FRET pair of dyes. We calculated the interdomain distance
between S142C and S366C from the anticorrelated emission of the two dyes and quantitatively described
the dynamics by a two-state Poisson process. A two-state description enables the determination of
kinetic rates of interconversion, k; and k,, between the two states because histograms provide the ratio of
(k1/ky) and correlations of FRET values provide the sum (k;+k,). We performed MD simulations of MMP1
dynamics and matched them with experimental dynamics. We created a two-dimensional map of
fluctuation correlations between every pair of MMP1 residues to show strong allosteric communications
in MMP1 and calculated a Gray Level Co-occurrence Matrix to quantify Shannon entropy of the
conformational fluctuations. We identified AB-specific allosteric residues in the hemopexin domain by
comparing a normalized correlation greater than 0.8 with the catalytic motif residues for free and AB-
bound MMP1. Our method of identifying substrate-specific and functionally-relevant allosteric residues
may enable modulating one MMP1 function without affecting the other functions, thereby targeting
MMPs with fewer side effects.

Results And Discussion

MMP1 dynamics on AB-induced aggregates. Using a prism-type Total Internal Reflection Fluorescence
(TIRF) microscope, we measured FRET between two dyes attached to the two domains of MMP1 (Figure
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1A). To this end, we created mutants of active (E219) and inactive (Q219) MMP1 with the substitutions
S142C and S366C (Figure 1B) for labeling with Alexa555 (donor) and Alexa647 (acceptor). Previously, we
showed that labeling does not affect the activity of MMP1. Inactive MMP1 acts as a control to
distinguish the effects of enzymatic activity from the effects of the microenvironment and photophysical
properties of the dyes. We created a thin layer of water-insoluble AB-induced aggregates on a quartz slide
(Figure 1C). We excited labeled MMPs using a 532 nm laser inside a flow cell as they interacted with AR
aggregates (see methods). As MMP1 undergoes interdomain dynamics, the distance and hence, FRET
between Alexa555 (donor) and Alexa647 (acceptor) changes, leading to the anticorrelated emission from
the two dyes (Figure 1D). When the two MMP1 domains are distant (open conformation), we get low
FRET values due to high Alexa555 (Ip) and low Alexa647 (1,) emissions. In contrast, when the two MMP1
domains are closer (closed conformation), we get high FRET values due to low Alexa555 (Ip) and high
Alexa647 (1) emissions. We calculated FRET values using the equation 1,/(Ix+lp), where each FRET value
determines the distance between the two MMP1 domains. Area-normalized histograms of FRET values
without ligands (Figure 1E) suggest that MMP1 prefers closed conformation on AB aggregates. This is in
contrast to the MMP1's preference for the open conformations on collagen, fibrin, and alpha-synuclein.
Although we need more studies in the future to identify the reason for the substrate-dependent preference
for the open and closed conformations, substrates play an active role in MMP1 function. A sum of two
Gaussians fits the histograms, suggesting an equilibrium of the open and closed conformations. In the
presence of tetracycline, a known MMP inhibitor, both active and inactive MMP1 prefer the closed
conformations more (Figure 1F). Previously, we argued that tetracycline holds the two MMP1 domains
via hydrogen bonds, facilitating the preference for closed conformations. We also calculated the
correlation between conformations at different time points. Finally, we fitted both power law and
exponential distributions to the autocorrelations and found that an exponential distribution fits the
experimental autocorrelations (Figures 1G-H).

A two-state Poisson process description of MMP1 dynamics on Ap-induced aggregates. Recently, we
published a quantitative analysis of MMP1 dynamics on collagen fibrils (34) and fibrin (35). A two-state
description of MMP1 dynamics allows for easier interpretation of conformational histograms and
correlations. The best-fit parameters for the Gaussian fit centers define the two states, S1 (low FRET) and
S2 (high FRET). We calculated the interconversion rates k1 (S1—S2) and k2 (S2—S1) between the two
states from the ratio (k1/k2= the area of S2 divided by the area of S1) and sum (k1+k2= the decay rate of
autocorrelation).

The two states are S1=0.47 and S2=0.52 on AB-induced aggregates for active MMP1 without ligand
(Table S1). In comparison, the two states are S1=0.44 and S2=0.55 on collagen (34), S1=0.42 and
S$2=0.51 on fibrin (35), and S1=0.46 and S2=0.52 on alpha-synuclein aggregates for active MMP1
without ligand. The correlation decay rate is 0.02 s™" on AB-induced aggregates for active MMP1 without
ligand (Table S1). In comparison, the decay rates are 0.13 s™" on collagen (34), 0.08 s on fibrin (35),
and 0.08 s™" on A aggregates for active MMP1 without ligand.
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We confirmed the validity of the two-state Poisson process approach to MMP1 dynamics by simulating
and analyzing smFRET trajectories using experimentally determined S1, S2, k1, k2, and noise (widths of
the histograms). In addition, we recovered the parameters by analyzing the simulated smFRET (Table S2)
similar to the analyses of experimental smFRET.

Tetracycline changes the conformational distributions of MMP1 and associated interconversion rates,
but the two-state description remains valid (Table S1). Underlying noise can obscure the individual states
(Figures 2A-B), but histograms (Figures 2C and 2E) and autocorrelations (Figures 2D and 2F) still
recovers the underlying parameters reasonably well (Table S2). The presence of noise increases the width
of conformational histograms but subtly affects autocorrelations. In the absence of noise, both power-
law and exponential distributions fit the autocorrelations (Figure 2F). However, with noise, the y-intercept
of the autocorrelations decreases, and only an exponential distribution fits the autocorrelations. The
decay rate of autocorrelations does not change as the noise level varies, and an exponential fit recovers
the underlying decay rate with and without noise. In other words, the presence of noise can convert a
power law correlation into an exponential correlation, similar to the conversion of a Lorentzian line shape
into a Gaussian line shape by noise (36).

MMP1 dynamics depend on the MMP1-AB binding pose. Since crystal structures of AB-bound MMP1 do
not exist, we predicted the binding poses of AB (PDB ID 11YT) and MMP1 (PDB ID 4AUQ) using molecular
docking software ClusPro (37, 38). To mimic experiments, we selected the three best scoring poses
(Figures 3A-C) and performed all-atom MD simulations at 22 °C for active and inactive MMP1. Since the
computational binding energy may not be the best indicator of appropriate docking poses (39), we
leveraged known cleavage sites for a similar MMP. Membrane tethered MT-MMP1, a collagenase similar
to MMP1, cleaves AB and produces several fragments, including A fragments with amino acids D1-H14,
D1-Q15,D1-L17,V18-V36, and V12-A30 (25). These cleavage sites are located around the middle of AR,
closer to the MMP1 catalytic site in pose 3 (Figure 3C). Figures 3D-F show the distributions of S142-S366
distance, which show that active MMP1 prefers closed conformations (high FRET) more than inactive
MMP1, in agreement with experiments (Figure 1E). However, simulated distribution for pose 3 (Figure 3F)
leads to a better match of the relative heights of the two peaks with the experimental distribution (Figure
1E). Based on this match between experiments and simulations, we considered pose 3 a relevant binding
pose between MMP1 and A for further analysis.

MMP1 catalytic pocket opening shows more peaks (Figures 3G-l). Since a larger catalytic pocket opening
may enable substrates to get closer to the active site, we checked for correlations between the
interdomain separation and catalytic pocket opening. The correlations between the catalytic pocket
opening and interdomain separation are positive for active MMP1 and negative for inactive MMP1 for
pose 1 and pose 3 (Figures 3J and 3L). This is consistent with previous reports of a positive correlation
between the catalytic pocket opening and interdomain separation for MMP1 dynamics on collagen (34)
and fibrin (35). A positive correlation between the distances further suggests that pose 3 may be a
functional binding pose.
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In summary, a combination of known cleavage sites, single molecule measurements of dynamics, and
all-atom simulations suggest that pose 3 may be a functionally relevant binding pose. However, there are
some caveats because we performed experiments on AB aggregates and performed simulations on AR
monomers. We took a similar approach for collagen and found that simulations on collagen monomer
agreed with experiments on collagen fibril when we restrained the collagen backbone (34), suggesting
strains in collagen monomers inside collagen fibrils. For AB, we did not have to restrain the ApB backbone,
suggesting a lack of strain in AB aggregates. Nevertheless, the two-way feedback between experiments
and simulations provides a starting point for a molecular-level understanding of MMP1-AB interactions.

Quantification of MMP1 dynamics on A reveals allostery. We quantified dynamics using correlations
because a correlated motion suggests a decrease in randomness or lower entropy (Figure 4). We divided
all-atom simulations into 1 ns long windows, determined the radial coordinates for the alpha carbon in
each residue, calculated correlations of fluctuations (Equation 2 in methods), and normalized correlations
to a range of 0 to 1 by subtracting the minimum and then dividing by the maximum. Figure 4A shows
correlations of simulated interdomain separation, consistent with correlations in experimental dynamics
(Figure 1G).

We calculated correlations between each pair of residues to check for allosteric communications. Figures
4B-C show the matrix of correlation values at lag number 1, averaged over 20 ns (see supplementary
information for the meaning of lag numbers and correlation calculations). The catalytic domain residues
(F100-Y260) have strong correlations with the hemopexin domain residues (D279-C466), suggesting
allosteric communications in MMP1 (Figures 4B-C). We used Shannon entropy to quantify randomness in
MMP1 dynamics. To this end, we divided the correlation values to create ten bins of width 0.1, calculated
10x10 gray-level co-occurrence matrix (GLCM), and defined Shannon entropyS = — ) plnp; where p;
is the probability of a microstate(see supplementary information for an explanation of Shannon entropy
calculations). The time-evolutions of Shannon entropy for pose 3 are shown in Figure 4D.

Changes at the catalytic site and identification of allosteric residues in MMP1. We compared two
dimensional correlation plots of AB-bound active MMP1 (Figure 5A) and AB-bound inactive MMP1 (Figure
5B) at 37°C. We considered the catalytic residue E219 as the origin and plotted the pairwise distance
between E219 and each of the catalytic motif residues HELGHSLGLSH (eleven residues from 218 to 228)
in three dimensions (Figure 5C).

The symbol size at each location is proportional to the standard deviation of the pairwise distance. The
comparison reveals that the configuration at the MMP1 catalytic site differs considerably between active
and inactive MMP1. Figure 5D shows the distributions of correlation values in Figures 5A-B. We used the
threshold correlation values at 0.8, the peak probability density (~2) divided by e (~2.7). We found all the
residues with normalized correlations greater than 0.8 in Figure 5A and Figure 5B with the catalytic motif
residues HELGHSLGLSH. Comparing the residues between AB-bound active MMP1 with free active
MMP1, we identified that the residues 1364, G369, P409, G410, and D418 are common among the three
repeats of AB-bound active MMP1 simulations and have exclusive correlations for AB-bound active
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MMP1. Identifying substrate-specific allosteric residues is significant because it may enable controlling
one MMP1 function without affecting the other functions.

Substrate-specific allosteric residues in MMP1 enable single-molecule insights into selecting lead
molecules. As a proof of principle, we wanted to check if AB-specific allosteric residues may help the
selection of drugs because AB has its unique signature or "fingerprint" on MMP1 at the catalytic and
distant allosteric sites. To this end, we screened ~9000 FDA-approved drugs (see methods) from the
ZINC15 database and selected compounds for which the difference between the binding affinities at the
top two binding modes is at least 10% because we want to find drugs that bind preferably to a specific
site on MMP1. With a 10% difference, we found ~600 drugs out of ~9000 starting drugs. Next, we
considered the top affinity site for each compound, identified the MMP1 residue closest to each drug for
each pose (Figure 6A-C). Then, we further selected drugs by identifying drugs binding within +2 residues
around the AB-specific allosteric residues (1364, G369, P409, G410, and D418) to only 23 lead molecules.
Figures 6D shows a few drugs with their predicted affinities near allosteric residues in pose 3. Figure 6E
shows how Trosec, the drug with the highest predicted affinity, binds to residue K362. These results
suggest that we may be able to identify drugs with an exclusive binding preference for an allosteric site
on MMP1 by screening a more significant number of compounds, potentially reducing off-target effects.
Since MMPs interact with and degrade many biomolecules in the human body, substrate-specific
allosteric residues or "allosteric fingerprints" may alter one MMP1 function without affecting its other
activities using allosteric ligands.

Conclusions

In summary, we measured and quantified the interdomain dynamics of MMP1 on A aggregates at the
single molecule level. We modeled the dynamics as a two-state Poisson process and determined the two
states' interconversion rates. Distributions of conformations for active and inactive MMP1 suggest that
MMP1 prefers closed conformations on AB aggregates. In contrast, we previously reported that MMP1
prefers open conformations on collagen (34), fibrin (35), and alpha-synuclein aggregates. Since there is
no crystal structure for AB-bound MMP1, we predicted the binding poses using molecular docking. We
performed all-atom simulations of dynamics for different binding poses between A and MMP1,
calculated histograms of interdomain dynamics from simulations, and compared them with single
molecule measurements. A comparison between experiments and simulations suggest that MMP1 binds
between residues V12 and L17 of AB (pose 3).

There are caveats because we performed simulations on AB monomer and experiments on aggregates.
Nevertheless, any degree of agreement between experiments and simulations provides a starting point for
integrative analysis. We took a similar approach for collagen and found that simulations of MMP1
dynamics on a collagen monomer agreed with experiments on collagen fibril when the collagen backbone
was restrained (34), suggesting the presence of strains in collagen monomers inside collagen fibrils. For
AB, we did not have to restrain the AB backbone for agreement between simulations and experiments,
suggesting a lack of strain in AR aggregates.
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We used simulations informed by experiments to quantify the randomness of dynamics by calculating
correlations between each pair of residues in MMP1 and creating a 2D map, which showed strong
allostery between the two MMP1 domains. A comparison of 2D correlation matrices for free and AB-
bound MMP1 identified changes at the catalytic motif and AB-specific allosteric residues in MMP1. We
also quantified randomness by defining a GLCM matrix to calculate Shannon entropy at each time point.

We performed virtual screening of approximately 9000 FDA-approved molecules against three predicted
binding poses between AB and MMP1 and compared the screening results with those for free MMP1. We
found that virtual screening results change upon binding AB and depend on the binding pose. Substrate-
and pose-dependent screening results suggest that we need to consider the substrate, the binding pose,
and the ligand-binding site targeting MMP1. The integrative approach combining experiments and
simulations enables the identification of substrate-dependent allostery at the single molecule level. Our
results may pave the way for substrate-specific control of MMP activity using allosteric ligands for fewer
side effects.

Materials And Methods

Purification of MMP1 and AB. We inserted MMP1 and AB sequences, optimized for expression in E. colj,
into the pET21b+ vector between Ndel (N-terminal) and Hindlll (C-terminal) restriction sites. We
transformed the plasmids into Rosetta (DE3) pLysS E. coli (Millipore, Cat# 70956-4) for protein
expression. We purified MMP1 and AR, as described in our previous publications (40, 41). The method of
purifying AB also produced AB-induced aggregates used in experiments.

Single molecule measurements of MMP1 dynamics. For smFRET measurements of MMP1 interdomain
dynamics, we used active and catalytically inactive mutant (E219Q) of MMP1. We introduced two
mutations, S142C and S366C, to facilitate labeling with Alexa555 and Alexa647 dyes. We created a thin
layer of AB aggregates on a quartz slide and made a flow cell for single molecule experiments using
double-sided adhesive tape sandwiched between the quartz slide and a glass coverslip. Labeled MMPs
were flowed into the flow cell and excited at 532 nm wavelength. We used the evanescent wave created at
the quartz slide-solution interface in a TIRF microscope to reduce background noise. We imaged
emissions from Alexa555 and Alexa647 to detect relative motion between the two MMP1 domains. Any
interdomain motion would lead to a non-radiative transfer of energy between the two dyes due to FRET,
increasing the emission from Alexa647 (1,) and simultaneously decreasing the emission from Alexa555
(Ip). We calculated approximate FRET efficiency by I,/( 15+ Ip) (42). Our previous publications have
described more details about single-molecule experiments and analyses (43—-46).

All-atom simulations. MD simulations of dynamics involve four steps: (a) construction of structures
using available PDB files, (b) preparatory steps before production simulations, (c) production simulations
of dynamics, and (d) analyses of simulated dynamics.
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Model construction of free and AB-bound MMP1. We created PDB files for MD simulations from PDB ID
4AUOQ for MMP1 (47) and PDB ID TIYT for AB (48). To predict binding poses between MMP1 and AB, we
used the ClusPro web server (https://cluspro.bu.edu/) with default parameters (37, 38) and submitted
PDB ID 11YT as the receptor and only MMP1 part from PDB ID 4AUO as the ligand. We selected the three
best scoring binding poses between MMP1 and AR.

We replaced A219 with E219 (active) and Q219 (inactive), using PyMOL's mutagenesis function (PyMOL
Molecular Graphics System, Version 2.0). E219 (40) is the same residue as E200 (47), which differs due
to the first amino acid used for counting. Full-length MMP1 has 469 residues. The first six amino acids
are MHSFPP and the last six amino acids are FNCRKN. For reference, PDB ID 4AUO starts with FVLTEG
(47) and has 366 residues. We counted from MHSFPP, and as such, FVLTEG numbers are 100, 101, 102,
103, 104, and 106. The catalytic triad HEL residues are H218, E219, and L220.

We replaced the missing side-chain atoms in the PDB files using Chimera's rotamer tool (49). We edited
the PDB files and removed zinc ions, calcium ions, and water molecules. We used the resulting PDB files
to perform molecular dynamics simulations, as described below.

Setting up MD simulations. We performed MD simulations using Gromacs 2021.2 software package (50)
by following the steps of a tutorial (http://www.mdtutorials.com/gmx/) (51). We used the Amber99 force
field (52) and SPCE water model (53). We configured the parameters such that the protein structures were
placed at the center of a cubic box with 3D period boundary conditions and solvated with water. Then, we
added ions to neutralize the charge of the overall system. We then used the steepest descent algorithm to
minimize the system's energy and equilibrated the system by NVT and NPT ensemble simulations. First,
we performed the NVT simulation and set the mean temperature at the desired temperature of 295 K (22
°C) or 310 K (37 °C) using a Berendsen thermostat for 100 ps. We used the Verlet cut-off scheme for
neighbor searching and updated the neighbor list every 20 fs. We used the particle mesh Ewald scheme
to calculate the electrostatic interactions with a cubic interpolation order of 4 and a cut-off at 1 nm. We
assigned initial velocities using a Maxwell distribution from the corresponding temperature. In the NPT
simulation, we maintained velocities from the NVT simulation output, and the pressure was set to 1 bar
using a Parrinello-Rahman barostat for an additional 100 ps.

Production MD simulations. Once the NVT and NPT simulations were finished and the system
equilibrated, we removed the position restraints and ran the production MD simulations. Each simulation
ran 20 ns long, simulated at 2 fs/step, and sampled every 5 ps. We repeated simulations three times for
each condition. We edited the final coordinates in the trajectory file to correct for periodicity and center the
protein complex. The distances between the catalytic pocket residues and the serine residues
(interdomain distance) are then measured at every time step using the Gromacs distance function. We
measured the interdomain separation between the alpha carbons of residues S142 and S366 and the
catalytic pocket opening between the alpha carbons of residues N171 and T230. To calculate the
correlation and Shannon entropy, we recorded the alpha carbon's coordinates in each residue of MMP1.
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Analyses of experimental and simulated dynamics. We quantified dynamics by conformational
histograms and correlations, as we did for previous publications (34, 35). For histograms, we chose bin
widths equal to or larger than1 / JN. where Nis the number of data points. We calculated the error in
each bin as the square root of the bin count. To obtain the probability density function for conformations,
we divided the bin counts and errors by the histogram area so that the area under the normalized
histogram equals 1. We fitted a sum of two Gaussians to the area-normalized histograms to determine
the two primary conformational states of MMP1 and their widths:

(X—b1)2 (X—b2)2

y= al X e_ C12 + az X e_ (,‘22

1

where a's, b's, and c's are amplitudes, centers, and widths of the Gaussians. Two Gaussian centers, b1
and b2, are the two states, ST and S2, of MMP1. The widths of the Gaussians are fluctuations around the
two states that we used for Poisson process simulations and analyses.

For correlations among conformations, we used the following equation:

N—
' 1

N-T1 N
1 , 1 ,
C(T)=m2 I(t)—mzf(t) x € I(t+ T)_N—T 2 I(t)
t=1 tl=]_ t,=1+T

2

where C(1)is the correlation at lag number 7, Nis the number of points in a FRET time series, and I(?) is
the FRET value at £. For autocorrelations, both factors in curly brackets were from the same time series.
For crosscorrelations, the two factors in curly brackets were from different time series representing
coordinates of different residues.

We normalized correlations by dividing correlation values at each lag by the correlation value at 7 = 0.
We fitted correlations between 7 = 1 and 7 = 1000 to both power-law and exponential distributions. For
power law, we used a form of Pareto distribution (54) that satisfies the boundary conditions, i.e.,
C(t=0) =1latt= 0and C(T = ») = Oat t = ». Specifically, we fitted the following equations to
correlation values:

C()=(axt+1)~P
C(r)=dxexp ¢*T+ f

3

Also, we used linear regression analysis to quantify correlations between the catalytic pocket opening
and interdomain separation from simulations. We used the interdomain distance as the single predictor
variable and the catalytic pocket distance as the response variable. We used the following equation for
linear regression analysis:
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y1'=.b0 +.b1XX1'

4
where by and b, are the estimated fit parameters. We calculated the error of each predictor value as the
95% confidence interval around the mean.

Single molecule insights into the virtual screening. We used PDB files for free MMP1 and three binding
poses between AR and MMP1 as the receptors. All PDB files were derived from PDB ID 4AUO. We opened
PDB files in AutoDockTools, added polar hydrogens, and created a .pdbqt file. We selected ~9000 FDA-
approved molecules from the ZINC15 database and downloaded them as an sdf file for ligands. We used
OpenBabel to convert the sdf file into a pdbqt file. Then, we used AutoDock Vina to create individual
.pdbqt files using vina_split on a Linux terminal. We also created a txt file containing filenames for the
selected molecules and a configuration file to specify the parameters of screening in AutoDock Vina. The
configuration file is a txt file with receptors' filename, docking box coordinates, number of modes, energy
range, and exhaustiveness. We used the Graphical User Interface in AutoDockTools to obtain the
coordinates by opening the Grid menu and selecting Grid Box. We adjusted the box size to enclose the
whole MMP1 to identify each compound's binding locations and affinities using an exhaustiveness of 10
for quicker screening. After the virtual screening, we obtained a pdbqt file of the top 10 docking modes
and a log of their binding affinity scores. We created scatter plots in Matlab to compare virtual screening
against three binding poses of AB-bound MMP1 with screening against free MMP1. We identified
molecules binding near the AB-specific allosteric residues in MMP1.
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Figure 1

Interdomain dynamics of MMP1 on AB-induced aggregates at 22 °C with 100 ms time resolution. (A)
Schematics of smFRET measurements using a TIRF microscope. (B) One of many binding poses
between MMP1 and AB. (C) Light microscopy image of Ap-induced aggregates on a slide. (D) Emission
intensities of Alexa555 and Alexa647 attached to active MMP1. (E) and (F) Area-normalized histograms
of FRET values (~200,000 FRET values, bin size=0.005) without ligand and in the presence of tetracycline
(an inhibitor), respectively, for active (blue) and inactive (orange) MMP1. All histograms are fitted to a
sum of two Gaussians (active: solid black line; inactive: solid red line). (G) and (H) Normalized
autocorrelations of FRET values without ligand and in the presence of tetracycline, respectively, for active
(blue) and inactive (orange) MMP1. All autocorrelations are fitted to exponentials and power laws
(exponential fit to active: dashed black line; power-law fit to active: dashed red ling; exponential fit to
inactive: solid black line; power-law fit to inactive: solid green line). The error bars in histograms and
autocorrelations represent the square roots of the bin counts and the standard errors of the mean (SEM)
and are too small to be seen. For best-fit parameters, see Table S1.
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Figure 2

Stochastic simulation of MMP1 dynamics on A as a two-state system. (A) and (B) Examples of
simulated smFRET trajectories with and without noise, respectively, for active MMP1 (blue) and inactive
MMP1 (orange) using experimental parameters for MMP1 without ligands. (C) Area-normalized
histograms of simulated FRET values with noise (active: blue; inactive: orange) with best fits to a sum of
two Gaussians (solid black line). (D) Autocorrelations of simulated FRET values with noise (active: blue;
inactive: orange) with best fits to exponentials (active: dashed black ling; inactive: solid black line). Power
law does not fit autocorrelations (active: dashed red line; inactive: solid green line). (E) Area-normalized
histograms of simulated FRET values without noise (active: blue; inactive: orange). (F) Autocorrelations
of simulated FRET values without noise (active: blue; inactive: orange) with best fits to exponentials
(active: dashed black ling; inactive: solid black line). Both exponential and power law fit autocorrelations
(active: dashed red line; inactive: solid green line). The error bars represent the standard errors of the
means (SEM) for histograms and autocorrelations and are too small to be seen. For best-fit parameters,

see Table S2.
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MMP1-AB binding pose-dependent dynamics of MMP1 at 22 °C. (A-C) Three top-scoring binding poses of
MMP1 (catalytic domain in blue and A in green) with AB (PDB ID 11YT) predicted by ClusPro. (D-F) Area-
normalized histograms (active MMP1: blue; inactive MMP1: orange) of interdomain separation of MMP1
(S142-S366 distance) for poses 1, 2, and 3, respectively. All histograms are fitted to a sum of two
Gaussians (active MMP1: solid black line; inactive MMP1: solid red line). (G-l) Area-normalized
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histograms (active MMP1: blue; inactive MMP1: orange) of the catalytic pocket opening (N171-T230
distance) of MMP1 for poses 1, 2, and 3, respectively. (J-L) Linear correlation plots of the catalytic pocket
opening and interdomain distance (active MMP1: blue; inactive MMP1: orange) for poses 1, 2, and 3,
respectively. The data were fitted to y; = by + b; x x; (Equation 4 in methods). Note that a larger domain
separation corresponds to a lower FRET value. Time resolution=2 fs; Data saved every 5 ps; RMSD
stabilization time for MMP1=~5 ns; Total simulation duration=20 ns. For calculations of linear
correlations, see methods. For best-fit parameters, see Table S3. The error bars in Figures 3D-l represent
the standard deviations of three repeats of simulations for each condition. Figures 3J-L show combined
data from the three repeats.
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Figure 4

Quantification of MMP1 allostery on AB at 22 °C for pose 3. (A) Autocorrelations of simulated
interdomain distance (active: blue; inactive: orange) with best fits to exponentials (active: dashed black
line; inactive: solid black line) and power law (active: dashed red line; inactive: solid green line). (B) and
(C) Correlations of position fluctuations between every pair of residues for active and inactive MMP1,
respectively. (D) Shannon entropy calculated from correlation plots for active (S=3.06+0.04, mean+SEM)
and inactive (S=3.03+0.03, mean*SEM). For best-fit parameters, see Table S4.
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Figure 5

Conformational changes of the MMP1 catalytic motif and identification of AB-specific allosteric residues
at 37 °C for pose 3. (A) Normalized correlations between each pair of residue for AB-bound active MMP1.
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(B) Normalized correlations between each pair of residue for AB-bound inactive MMP1. (C) Three-
dimensional configurations of the catalytic motif residues for AB-bound active MMP1 (blue) and AB-
bound inactive MMP1 (red). (D) Histograms of correlation values for AB-bound active MMP1 (blue) and
AB-bound inactive MMP1 (red).
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Figure 6

Substrate- and pose-dependent virtual screening of molecules against MMP1. Binding affinities of lead
compounds and closest MMP1 residues for AB-bound MMP1 in (A) pose 1, (B) pose 2, and (C) pose 3. (D)
Compounds that bind to AB-specific allosteric residues in MMP1 in pose 3. (E) Trosec bound to Ab-bound
MMP1 in pose 3. Lead molecules depend on whether MMP1 is free or bound to AB. Also, not all identified
allosteric residues have associated lead molecules. Allosteric residues reduce the number of lead
molecules significantly.
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